The protective effect of naringenin on ulcerative colitis in mice through increasing Nrf2 pathway activity.

IF 3.3 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jiaxiang Li, Li Hua, Meichun Hu, Ni Zhu, Sijin Dong, Xiaoli Jing, Zihuan Zhu, Yifei Liu, Yanhong Zhou
{"title":"The protective effect of naringenin on ulcerative colitis in mice through increasing Nrf2 pathway activity.","authors":"Jiaxiang Li, Li Hua, Meichun Hu, Ni Zhu, Sijin Dong, Xiaoli Jing, Zihuan Zhu, Yifei Liu, Yanhong Zhou","doi":"10.3724/abbs.2025026","DOIUrl":null,"url":null,"abstract":"<p><p>Ulcerative colitis (UC) is a chronic inflammatory disease with an increasing prevalence worldwide. Naringenin (NAR) has been proven effective in preventing UC, but its mechanism has not been fully elucidated. In this study, network pharmacology and bioinformatics methods are used to screen the genes associated with NAR and UC. A mouse model of dextran sulfate sodium (DSS)-induced UC is established. After treatment with NAR, the disease activity index (DAI) is scored, and colonic histopathology is observed via hematoxylin-eosin (HE) staining. The expressions of the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway and inflammation-related factors in the colons of UC mice are examined via western blot analysis and immunohistochemistry (IHC). The results of the animal experiments reveal that the model group of UC mice present the most severe weight loss and the highest DAI scores. After the administration of NAR, weight loss is alleviated, and DAI scores are reduced ( <i>P <</i> 0.05). NAR improves pathological manifestations in the mouse colon, such as reducing inflammatory cell infiltration and restoring goblet cell loss ( <i>P <</i> 0.05). NAR significantly increases the protein expression levels of Nrf2, heme oxygenase 1 (HO-1), and NAD(P)H dehydrogenase [quinone] 1 (NQO1) in the colon ( <i>P <</i> 0.05) but decreases the protein expression levels of nuclear factor kappa-B (NF-κB), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) ( <i>P <</i> 0.05), thus alleviating the inflammatory response in UC model mice.</p>","PeriodicalId":6978,"journal":{"name":"Acta biochimica et biophysica Sinica","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta biochimica et biophysica Sinica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3724/abbs.2025026","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ulcerative colitis (UC) is a chronic inflammatory disease with an increasing prevalence worldwide. Naringenin (NAR) has been proven effective in preventing UC, but its mechanism has not been fully elucidated. In this study, network pharmacology and bioinformatics methods are used to screen the genes associated with NAR and UC. A mouse model of dextran sulfate sodium (DSS)-induced UC is established. After treatment with NAR, the disease activity index (DAI) is scored, and colonic histopathology is observed via hematoxylin-eosin (HE) staining. The expressions of the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway and inflammation-related factors in the colons of UC mice are examined via western blot analysis and immunohistochemistry (IHC). The results of the animal experiments reveal that the model group of UC mice present the most severe weight loss and the highest DAI scores. After the administration of NAR, weight loss is alleviated, and DAI scores are reduced ( P < 0.05). NAR improves pathological manifestations in the mouse colon, such as reducing inflammatory cell infiltration and restoring goblet cell loss ( P < 0.05). NAR significantly increases the protein expression levels of Nrf2, heme oxygenase 1 (HO-1), and NAD(P)H dehydrogenase [quinone] 1 (NQO1) in the colon ( P < 0.05) but decreases the protein expression levels of nuclear factor kappa-B (NF-κB), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) ( P < 0.05), thus alleviating the inflammatory response in UC model mice.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta biochimica et biophysica Sinica
Acta biochimica et biophysica Sinica 生物-生化与分子生物学
CiteScore
5.00
自引率
5.40%
发文量
170
审稿时长
3 months
期刊介绍: Acta Biochimica et Biophysica Sinica (ABBS) is an internationally peer-reviewed journal sponsored by the Shanghai Institute of Biochemistry and Cell Biology (CAS). ABBS aims to publish original research articles and review articles in diverse fields of biochemical research including Protein Science, Nucleic Acids, Molecular Biology, Cell Biology, Biophysics, Immunology, and Signal Transduction, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信