Revealing a Heavy-Atom Assisted Rotation Mechanism in the H + NH2Cl Multi-Channel Reaction.

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry A Pub Date : 2025-03-27 Epub Date: 2025-03-12 DOI:10.1021/acs.jpca.5c00415
Yizhuo Chen, Zhao Tu, Jiaqi Li, Chuanxi Duan, Hongwei Song, Minghui Yang
{"title":"Revealing a Heavy-Atom Assisted Rotation Mechanism in the H + NH<sub>2</sub>Cl Multi-Channel Reaction.","authors":"Yizhuo Chen, Zhao Tu, Jiaqi Li, Chuanxi Duan, Hongwei Song, Minghui Yang","doi":"10.1021/acs.jpca.5c00415","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying atomic-level mechanisms in elemental chemical reactions is crucial for understanding complex reaction processes. This study focuses on the typical multichannel H + NH<sub>2</sub>Cl reaction, which plays a significant role in environmental science. High-level ab initio calculations determined seven distinct reaction pathways, leading to three product channels: H<sub>2</sub> + NHCl, HCl + NH<sub>2</sub>, and Cl + NH<sub>3</sub>. A full-dimensional, globally accurate potential energy surface was constructed by fitting 143,333 ab initio energy points, calculated at the UCCSD(T)-F12a/aug-cc-pVTZ level. The atomic-level mechanisms of the reaction along these seven pathways were identified and visualized using quasi-classical trajectory calculations. Interestingly, a novel reaction mechanism, termed \"heavy-atom assisted rotation\", was discovered. In this light-heavy-heavy reaction, the attacked heavy atom (either Cl or N) acts as a \"gangplank\", propelling the light H atom in front of the other heavy atom through rotational motion. This mechanism results in forward and sideward scattering of products at small impact parameters, which contrasts with any known direct mechanisms.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"2887-2895"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.5c00415","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Identifying atomic-level mechanisms in elemental chemical reactions is crucial for understanding complex reaction processes. This study focuses on the typical multichannel H + NH2Cl reaction, which plays a significant role in environmental science. High-level ab initio calculations determined seven distinct reaction pathways, leading to three product channels: H2 + NHCl, HCl + NH2, and Cl + NH3. A full-dimensional, globally accurate potential energy surface was constructed by fitting 143,333 ab initio energy points, calculated at the UCCSD(T)-F12a/aug-cc-pVTZ level. The atomic-level mechanisms of the reaction along these seven pathways were identified and visualized using quasi-classical trajectory calculations. Interestingly, a novel reaction mechanism, termed "heavy-atom assisted rotation", was discovered. In this light-heavy-heavy reaction, the attacked heavy atom (either Cl or N) acts as a "gangplank", propelling the light H atom in front of the other heavy atom through rotational motion. This mechanism results in forward and sideward scattering of products at small impact parameters, which contrasts with any known direct mechanisms.

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信