Unraveling the Versatility of Carbon Black - Polylactic Acid (CB/PLA) 3D-Printed Electrodes via Sustainable Electrochemical Activation.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Anastasios V Papavasileiou, Lukáš Děkanovský, Levna Chacko, Bing Wu, Jan Luxa, Jakub Regner, Jan Paštika, Dana Koňáková, Zdeněk Sofer
{"title":"Unraveling the Versatility of Carbon Black - Polylactic Acid (CB/PLA) 3D-Printed Electrodes via Sustainable Electrochemical Activation.","authors":"Anastasios V Papavasileiou, Lukáš Děkanovský, Levna Chacko, Bing Wu, Jan Luxa, Jakub Regner, Jan Paštika, Dana Koňáková, Zdeněk Sofer","doi":"10.1002/smtd.202402214","DOIUrl":null,"url":null,"abstract":"<p><p>Commercially available conductive filaments are not designed for electrochemical applications, resulting in 3D printed electrodes with poor electrochemical behavior, restricting their implementation in energy and sensing technologies. The proper selection of an activation method can unlock their use in advanced applications. In this work, rectangular electrodes made from carbon black - polylactic acid (CB/PLA) filament are 3D printed with different layouts (grid and compact) and then activated using a highly reproducible eco-compatible electrochemical (EC) treatment. The electrodes are characterized for their morphological, structural, and electrochemical features to obtain insights into the material properties and functionality. Furthermore, the influence of the electrode layout as well as the activation conditions are studied aiming to provide a better understanding of the mechanism driving the electrochemical behavior of the electrodes. The EC activation enhances the electrochemical performance, provides a uniform electrochemical activity in the electrode's interface and allows the manipulation of the electrochemical properties of 3D printed electrodes by adjusting the duration of the treatment. CB/PLA electrodes offer a wide stable potential window that benefits their use in water-based electrochemical applications. Thus, their suitability for Zn-ion batteries and electrochemical sensing is explored, followed by their application in hydroquinone determination in water samples.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2402214"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202402214","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Commercially available conductive filaments are not designed for electrochemical applications, resulting in 3D printed electrodes with poor electrochemical behavior, restricting their implementation in energy and sensing technologies. The proper selection of an activation method can unlock their use in advanced applications. In this work, rectangular electrodes made from carbon black - polylactic acid (CB/PLA) filament are 3D printed with different layouts (grid and compact) and then activated using a highly reproducible eco-compatible electrochemical (EC) treatment. The electrodes are characterized for their morphological, structural, and electrochemical features to obtain insights into the material properties and functionality. Furthermore, the influence of the electrode layout as well as the activation conditions are studied aiming to provide a better understanding of the mechanism driving the electrochemical behavior of the electrodes. The EC activation enhances the electrochemical performance, provides a uniform electrochemical activity in the electrode's interface and allows the manipulation of the electrochemical properties of 3D printed electrodes by adjusting the duration of the treatment. CB/PLA electrodes offer a wide stable potential window that benefits their use in water-based electrochemical applications. Thus, their suitability for Zn-ion batteries and electrochemical sensing is explored, followed by their application in hydroquinone determination in water samples.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信