{"title":"Manipulation of Single Nanowire and its Applications.","authors":"Siyuan Tian, Xinman Chen, Baofu Ding","doi":"10.1002/smtd.202402053","DOIUrl":null,"url":null,"abstract":"<p><p>Micro/nano manipulation of single nanowire has emerged as a popular direction of study in the field of nanotechnology, with promising applications in cutting-edge technologies such as device manufacturing, medical treatment, and nanorobotics. The synthesis of nanowires with controllable length and diameter makes them meet various micro/nano manipulation demands. As manipulation techniques have advanced, including the use of optical tweezers, electric and magnetic fields, mechanical control, and several more control methods, they have demonstrated unique advantages in different application fields. For instance, the application of micro/nano manipulation of single nanowire in device manufacturing, cell drug precision transport, and nanomotors has demonstrated their potential in device development, biomedicine, and precision manufacturing. However, application extension of single nanowire manipulation is still in its infancy. This review systematically sorts out the progress of nanowire synthesis and manipulation and discusses its current research status and prospects in various application fields. It aims to provide a comprehensive reference and guidance for future research and promote the innovative applications of nanowire manipulation technology in a wide range of fields.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2402053"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202402053","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Micro/nano manipulation of single nanowire has emerged as a popular direction of study in the field of nanotechnology, with promising applications in cutting-edge technologies such as device manufacturing, medical treatment, and nanorobotics. The synthesis of nanowires with controllable length and diameter makes them meet various micro/nano manipulation demands. As manipulation techniques have advanced, including the use of optical tweezers, electric and magnetic fields, mechanical control, and several more control methods, they have demonstrated unique advantages in different application fields. For instance, the application of micro/nano manipulation of single nanowire in device manufacturing, cell drug precision transport, and nanomotors has demonstrated their potential in device development, biomedicine, and precision manufacturing. However, application extension of single nanowire manipulation is still in its infancy. This review systematically sorts out the progress of nanowire synthesis and manipulation and discusses its current research status and prospects in various application fields. It aims to provide a comprehensive reference and guidance for future research and promote the innovative applications of nanowire manipulation technology in a wide range of fields.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.