Scalable synthesis of Cu-cluster catalysts via spark ablation for the electrochemical conversion of CO2 to acetaldehyde

0 CHEMISTRY, MULTIDISCIPLINARY
Cedric David Koolen, Jack Kirk Pedersen, Bernardus Zijlstra, Maximilian Winzely, Jie Zhang, Tobias V. Pfeiffer, Wilbert Vrijburg, Mo Li, Ayush Agarwal, Zohreh Akbari, Yasemen Kuddusi, Juan Herranz, Olga V. Safonova, Andreas Schmidt-Ott, Wen Luo, Andreas Zuettel
{"title":"Scalable synthesis of Cu-cluster catalysts via spark ablation for the electrochemical conversion of CO2 to acetaldehyde","authors":"Cedric David Koolen, Jack Kirk Pedersen, Bernardus Zijlstra, Maximilian Winzely, Jie Zhang, Tobias V. Pfeiffer, Wilbert Vrijburg, Mo Li, Ayush Agarwal, Zohreh Akbari, Yasemen Kuddusi, Juan Herranz, Olga V. Safonova, Andreas Schmidt-Ott, Wen Luo, Andreas Zuettel","doi":"10.1038/s44160-024-00705-3","DOIUrl":null,"url":null,"abstract":"The electrochemical conversion of CO2 into acetaldehyde offers a sustainable and green alternative to the Wacker process. However, current electrocatalysts cannot effectively compete with heterogeneous processes owing to their limited selectivity towards acetaldehyde, resulting in low energy efficiencies. Here we report a theory-guided synthesis of a series of Cu-cluster catalysts (~1.6 nm) immobilized on various heteroatom-doped carbonaceous supports, produced via spark ablation of Cu electrodes (2.6 μg h−1 production rate, 6 Wh energy consumption). These catalysts achieve acetaldehyde selectivity of up to 92% at only 600 mV from the equilibrium potential. In addition, the catalysts exhibit exceptional catalytic stability during a rigorous 30 h stress test involving three repeated start–stop cycles. In situ X-ray absorption spectroscopy reveals that the initial oxide clusters were completely reduced under cathodic potential and maintained their metallic nature even after exposure to air, explaining the stable performance of the catalyst. First-principles simulations further elucidate a possible mechanism of CO2 conversion to acetaldehyde. Acetaldehyde is a petrochemically sourced base chemical used in the production of drugs, fragrances and dyes. Now acetaldehyde can be produced selectively using a Cu-cluster electrocatalyst, electricity, CO2 and water. Guided by a high-throughput in silico screening process, spark ablation enables the production of a high-performing Cu-cluster electrocatalyst with a precise number of atoms.","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"4 3","pages":"336-346"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature synthesis","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44160-024-00705-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The electrochemical conversion of CO2 into acetaldehyde offers a sustainable and green alternative to the Wacker process. However, current electrocatalysts cannot effectively compete with heterogeneous processes owing to their limited selectivity towards acetaldehyde, resulting in low energy efficiencies. Here we report a theory-guided synthesis of a series of Cu-cluster catalysts (~1.6 nm) immobilized on various heteroatom-doped carbonaceous supports, produced via spark ablation of Cu electrodes (2.6 μg h−1 production rate, 6 Wh energy consumption). These catalysts achieve acetaldehyde selectivity of up to 92% at only 600 mV from the equilibrium potential. In addition, the catalysts exhibit exceptional catalytic stability during a rigorous 30 h stress test involving three repeated start–stop cycles. In situ X-ray absorption spectroscopy reveals that the initial oxide clusters were completely reduced under cathodic potential and maintained their metallic nature even after exposure to air, explaining the stable performance of the catalyst. First-principles simulations further elucidate a possible mechanism of CO2 conversion to acetaldehyde. Acetaldehyde is a petrochemically sourced base chemical used in the production of drugs, fragrances and dyes. Now acetaldehyde can be produced selectively using a Cu-cluster electrocatalyst, electricity, CO2 and water. Guided by a high-throughput in silico screening process, spark ablation enables the production of a high-performing Cu-cluster electrocatalyst with a precise number of atoms.

Abstract Image

火花烧蚀法可扩展合成cu簇催化剂,用于CO2到乙醛的电化学转化
电化学将二氧化碳转化为乙醛为瓦克工艺提供了一种可持续和绿色的替代方案。然而,目前的电催化剂由于对乙醛的选择性有限,不能有效地与异相过程竞争,导致能源效率低。在这里,我们报道了一种理论指导下的一系列Cu簇催化剂(~1.6 nm)的合成,这些催化剂固定在各种杂原子掺杂的碳质载体上,通过Cu电极的火花烧蚀(2.6 μg h−1的产率,6 Wh的能量消耗)。这些催化剂在距离平衡电位仅600 mV的情况下实现高达92%的乙醛选择性。此外,催化剂在严格的30小时压力测试(包括3次重复启停循环)中表现出优异的催化稳定性。原位x射线吸收光谱显示,在阴极电位下,初始氧化团簇完全还原,即使暴露在空气中也保持其金属性质,解释了催化剂性能稳定的原因。第一性原理模拟进一步阐明了二氧化碳转化为乙醛的可能机制。乙醛是一种石油化学来源的基础化学品,用于生产药物、香料和染料。现在,乙醛可以选择性地使用铜簇电催化剂、电、二氧化碳和水来生产。在高通量硅筛选工艺的指导下,火花烧蚀能够生产具有精确原子数量的高性能铜簇电催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信