Synthesis of amorphous metal oxides via a crystalline to amorphous phase transition strategy

0 CHEMISTRY, MULTIDISCIPLINARY
Bei Wu, Xiaocheng Liu, Peigen Liu, Geng Wu, Lin Tian, Xiao Han, Junmin Li, Xun Hong
{"title":"Synthesis of amorphous metal oxides via a crystalline to amorphous phase transition strategy","authors":"Bei Wu, Xiaocheng Liu, Peigen Liu, Geng Wu, Lin Tian, Xiao Han, Junmin Li, Xun Hong","doi":"10.1038/s44160-024-00704-4","DOIUrl":null,"url":null,"abstract":"Amorphous metal oxide (AMO) nanomaterials are attractive because of their unique short-range order structure, but controllable synthesis is still challenging. Here we report a Li+-assisted liquid-phase reduction method, which converts a series of crystalline metal oxides into amorphous structures (RuOx, PtOx, CuOx, NiOx, PdOx, MnOx and NiCoOx). Taking RuO2 as an example, in situ Raman and X-ray absorption spectroscopy indicate that the reduction of Ru–O coordination number and distortion of the medium-range structure of Ru–Ru during the amorphization process are caused by naphthalene radical anions and lithium ions. Theoretical calculations indicate that Li⁺ insertion in RuOx strengthens its electrostatic interaction with the naphthalene radical anion, accelerating the stripping of oxygen from Li⁺-inserted RuOx. The introduction of positive charge by Li⁺ insertion can disrupt the internal charge balance of crystal ruthenium oxide, and therefore reduce the formation energy of intermediates for producing amorphous RuOx. This strategy paves a way for achieving the controllable synthesis of AMOs. A Li⁺-assisted liquid-phase reduction method is reported, which converts crystalline metal oxides into amorphous metal oxides. The electrostatic interaction between the naphthalene radical anions and Li⁺-inserted metal oxides is found to promote the amorphization process.","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"4 3","pages":"370-379"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature synthesis","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44160-024-00704-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Amorphous metal oxide (AMO) nanomaterials are attractive because of their unique short-range order structure, but controllable synthesis is still challenging. Here we report a Li+-assisted liquid-phase reduction method, which converts a series of crystalline metal oxides into amorphous structures (RuOx, PtOx, CuOx, NiOx, PdOx, MnOx and NiCoOx). Taking RuO2 as an example, in situ Raman and X-ray absorption spectroscopy indicate that the reduction of Ru–O coordination number and distortion of the medium-range structure of Ru–Ru during the amorphization process are caused by naphthalene radical anions and lithium ions. Theoretical calculations indicate that Li⁺ insertion in RuOx strengthens its electrostatic interaction with the naphthalene radical anion, accelerating the stripping of oxygen from Li⁺-inserted RuOx. The introduction of positive charge by Li⁺ insertion can disrupt the internal charge balance of crystal ruthenium oxide, and therefore reduce the formation energy of intermediates for producing amorphous RuOx. This strategy paves a way for achieving the controllable synthesis of AMOs. A Li⁺-assisted liquid-phase reduction method is reported, which converts crystalline metal oxides into amorphous metal oxides. The electrostatic interaction between the naphthalene radical anions and Li⁺-inserted metal oxides is found to promote the amorphization process.

Abstract Image

通过结晶到非晶相变策略合成非晶金属氧化物
非晶态金属氧化物(AMO)纳米材料因其独特的近程有序结构而受到广泛关注,但其可控合成仍具有挑战性。本文报道了一种Li+辅助液相还原方法,该方法将一系列结晶金属氧化物(RuOx, PtOx, CuOx, NiOx, PdOx, MnOx和NiCoOx)转化为非晶结构。以RuO2为例,原位拉曼光谱和x射线吸收光谱表明,在非晶化过程中Ru-O配位数的降低和Ru-Ru的中程结构的畸变是由萘自由基阴离子和锂离子引起的。理论计算表明,Li⁺在RuOx中的插入增强了其与萘自由基阴离子的静电相互作用,加速了Li⁺插入的RuOx中氧的剥离。Li +插入引入正电荷会破坏晶体氧化钌的内部电荷平衡,从而降低生成非晶态氧化钌的中间体的生成能。该策略为实现AMOs的可控合成铺平了道路。报道了一种Li +辅助液相还原方法,将结晶金属氧化物转化为非晶金属氧化物。发现萘自由基阴离子与Li +插入的金属氧化物之间的静电相互作用促进了非晶化过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信