Adnane Osmane, Jasmine K. Sandhu, Tom Elsden, Oliver Allanson, Lucile Turc
{"title":"Radial Diffusion Driven by Spatially Localized ULF Waves in the Earth's Magnetosphere","authors":"Adnane Osmane, Jasmine K. Sandhu, Tom Elsden, Oliver Allanson, Lucile Turc","doi":"10.1029/2024JA033393","DOIUrl":null,"url":null,"abstract":"<p>Ultra-Low Frequency (ULF) waves are critical drivers of particle acceleration and loss in the Earth's magnetosphere. While statistical models of ULF-induced radial transport have traditionally assumed that the waves are uniformly distributed across magnetic local time (MLT), decades of observational evidence show significant MLT localization of ULF waves in the Earth's magnetosphere. This study presents, for the first time, a quasi-linear radial diffusion coefficient accounting for localized ULF waves. Our results reveal that when ULF waves cover more than 30% of the MLT, the radial diffusion efficiency is comparable to that of uniform wave distributions. However, when ULF waves are confined within 10% of the drift orbit, the transport coefficient is enhanced by 10%–25%, indicating that narrowly localized ULF waves are efficient drivers of radial diffusion.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033393","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Ultra-Low Frequency (ULF) waves are critical drivers of particle acceleration and loss in the Earth's magnetosphere. While statistical models of ULF-induced radial transport have traditionally assumed that the waves are uniformly distributed across magnetic local time (MLT), decades of observational evidence show significant MLT localization of ULF waves in the Earth's magnetosphere. This study presents, for the first time, a quasi-linear radial diffusion coefficient accounting for localized ULF waves. Our results reveal that when ULF waves cover more than 30% of the MLT, the radial diffusion efficiency is comparable to that of uniform wave distributions. However, when ULF waves are confined within 10% of the drift orbit, the transport coefficient is enhanced by 10%–25%, indicating that narrowly localized ULF waves are efficient drivers of radial diffusion.