Radial Diffusion Driven by Spatially Localized ULF Waves in the Earth's Magnetosphere

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
Adnane Osmane, Jasmine K. Sandhu, Tom Elsden, Oliver Allanson, Lucile Turc
{"title":"Radial Diffusion Driven by Spatially Localized ULF Waves in the Earth's Magnetosphere","authors":"Adnane Osmane,&nbsp;Jasmine K. Sandhu,&nbsp;Tom Elsden,&nbsp;Oliver Allanson,&nbsp;Lucile Turc","doi":"10.1029/2024JA033393","DOIUrl":null,"url":null,"abstract":"<p>Ultra-Low Frequency (ULF) waves are critical drivers of particle acceleration and loss in the Earth's magnetosphere. While statistical models of ULF-induced radial transport have traditionally assumed that the waves are uniformly distributed across magnetic local time (MLT), decades of observational evidence show significant MLT localization of ULF waves in the Earth's magnetosphere. This study presents, for the first time, a quasi-linear radial diffusion coefficient accounting for localized ULF waves. Our results reveal that when ULF waves cover more than 30% of the MLT, the radial diffusion efficiency is comparable to that of uniform wave distributions. However, when ULF waves are confined within 10% of the drift orbit, the transport coefficient is enhanced by 10%–25%, indicating that narrowly localized ULF waves are efficient drivers of radial diffusion.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033393","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Ultra-Low Frequency (ULF) waves are critical drivers of particle acceleration and loss in the Earth's magnetosphere. While statistical models of ULF-induced radial transport have traditionally assumed that the waves are uniformly distributed across magnetic local time (MLT), decades of observational evidence show significant MLT localization of ULF waves in the Earth's magnetosphere. This study presents, for the first time, a quasi-linear radial diffusion coefficient accounting for localized ULF waves. Our results reveal that when ULF waves cover more than 30% of the MLT, the radial diffusion efficiency is comparable to that of uniform wave distributions. However, when ULF waves are confined within 10% of the drift orbit, the transport coefficient is enhanced by 10%–25%, indicating that narrowly localized ULF waves are efficient drivers of radial diffusion.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信