Bioactivity and Mechanical Performance of Centrifugally Spun Poly(D,L-Lactide)/Poly(3-Hydroxybutyrate) Submicrometric Fibers Containing Zinc Oxide and Hydroxyapatite Nanostructures

IF 2.7 3区 化学 Q2 POLYMER SCIENCE
Victoria Padilla-Gainza, Heriberto Rodríguez-Tobías, Karen Lozano, Cristóbal Rodríguez, Robert Gilkerson, Antonio S. Ledezma-Pérez, Narcedalia Anaya-Barbosa, Graciela Morales
{"title":"Bioactivity and Mechanical Performance of Centrifugally Spun Poly(D,L-Lactide)/Poly(3-Hydroxybutyrate) Submicrometric Fibers Containing Zinc Oxide and Hydroxyapatite Nanostructures","authors":"Victoria Padilla-Gainza,&nbsp;Heriberto Rodríguez-Tobías,&nbsp;Karen Lozano,&nbsp;Cristóbal Rodríguez,&nbsp;Robert Gilkerson,&nbsp;Antonio S. Ledezma-Pérez,&nbsp;Narcedalia Anaya-Barbosa,&nbsp;Graciela Morales","doi":"10.1002/app.56756","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study investigates the morphological, thermal, mechanical, and bioactive properties of centrifugally spun fibrous composites made from poly(D,L-lactide)/poly(3-hydroxybutyrate) (PLA/PHB) blends with zinc oxide (ZnO) and hydroxyapatite (Hap) nanoparticles. A 75/25 PLA/PHB weight ratio was chosen to balance mechanical and thermal properties. The precursor solution viscosities ranged from 0.25 to 0.50 Pa s, increasing with nanoparticle incorporation probably due to polymer-nanoparticle interactions. SEM revealed a uniform fibrous morphology, with diameters of 1.21 for PLA/PHB, 2.65 for PLA/ZnO/Hap, and 1.80 μm for PLA/PHB/ZnO/Hap. TGA showed two-step degradation for PLA/PHB fibers, while PLA/PHB/ZnO/Hap degraded in a single step at 249°C, leaving a residue of 9.95%. DSC indicated partial miscibility, with cold crystallization at 85°C (enthalpy: 7.72 J/g), slightly modified by nanoparticle addition. PLA/PHB fibers achieved a Young's modulus of 24.96 ± 3.91 MPa, three times that of pure PLA, but adding ZnO and Hap reduced modulus and tensile strength to 6.03 and 0.29 MPa, retaining suitability for biomedical applications. PLA/PHB/ZnO/Hap fibers exhibited 90% \n <i>Escherichia coli</i>\n growth inhibition and enhanced MC3T3-E1 cell viability by 120% on day 7. These results highlight their potential for antimicrobial, biocompatible medical devices.</p>\n </div>","PeriodicalId":183,"journal":{"name":"Journal of Applied Polymer Science","volume":"142 16","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/app.56756","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the morphological, thermal, mechanical, and bioactive properties of centrifugally spun fibrous composites made from poly(D,L-lactide)/poly(3-hydroxybutyrate) (PLA/PHB) blends with zinc oxide (ZnO) and hydroxyapatite (Hap) nanoparticles. A 75/25 PLA/PHB weight ratio was chosen to balance mechanical and thermal properties. The precursor solution viscosities ranged from 0.25 to 0.50 Pa s, increasing with nanoparticle incorporation probably due to polymer-nanoparticle interactions. SEM revealed a uniform fibrous morphology, with diameters of 1.21 for PLA/PHB, 2.65 for PLA/ZnO/Hap, and 1.80 μm for PLA/PHB/ZnO/Hap. TGA showed two-step degradation for PLA/PHB fibers, while PLA/PHB/ZnO/Hap degraded in a single step at 249°C, leaving a residue of 9.95%. DSC indicated partial miscibility, with cold crystallization at 85°C (enthalpy: 7.72 J/g), slightly modified by nanoparticle addition. PLA/PHB fibers achieved a Young's modulus of 24.96 ± 3.91 MPa, three times that of pure PLA, but adding ZnO and Hap reduced modulus and tensile strength to 6.03 and 0.29 MPa, retaining suitability for biomedical applications. PLA/PHB/ZnO/Hap fibers exhibited 90% Escherichia coli growth inhibition and enhanced MC3T3-E1 cell viability by 120% on day 7. These results highlight their potential for antimicrobial, biocompatible medical devices.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Polymer Science
Journal of Applied Polymer Science 化学-高分子科学
CiteScore
5.70
自引率
10.00%
发文量
1280
审稿时长
2.7 months
期刊介绍: The Journal of Applied Polymer Science is the largest peer-reviewed publication in polymers, #3 by total citations, and features results with real-world impact on membranes, polysaccharides, and much more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信