{"title":"Genome-wide association and selection studies reveal genomic insight into saline-alkali tolerance in rice","authors":"Jin Li, Chen Xu, Yunlu Tian, Gaoming Chen, Wenchao Chi, Zhaoyang Dai, Jing Li, Chunyuan Wang, Xinran Cheng, Yan Liu, Zhiguang Sun, Jingfang Li, Baoxiang Wang, Dayong Xu, Xianjun Sun, Hui Zhang, Chengsong Zhu, Chunming Wang, Jianmin Wan","doi":"10.1111/tpj.70056","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Saline-alkali stress has detrimental effects on growth and development of rice (<i>Oryza sativa</i> L.). Domesticated rice cultivars with high saline-alkali tolerance (SAT) are essential for sustainable agriculture. To explore the genomic basis underlying SAT in rice, we integrate genome-wide association study (GWAS) with selective sweep analysis using a core population consisting of 234 cultivars grown in the saline and normal fields across three consecutive years and identify 70 genes associated with SAT with signals of selection and evolution between subpopulations of tolerance and sensitivity. We detected and subsequently characterized GATA19 trans-regulated <i>SAT1/OsCYL4</i> that regulated SAT through reactive oxygen species (ROS) scavenging pathway. Our results provide a comprehensive insight into genome-wide natural variants and selection sweep underlying saline-alkali tolerance and pave avenues for SAT breeding through genome editing and genomic selection in rice.</p>\n </div>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"121 6","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70056","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Saline-alkali stress has detrimental effects on growth and development of rice (Oryza sativa L.). Domesticated rice cultivars with high saline-alkali tolerance (SAT) are essential for sustainable agriculture. To explore the genomic basis underlying SAT in rice, we integrate genome-wide association study (GWAS) with selective sweep analysis using a core population consisting of 234 cultivars grown in the saline and normal fields across three consecutive years and identify 70 genes associated with SAT with signals of selection and evolution between subpopulations of tolerance and sensitivity. We detected and subsequently characterized GATA19 trans-regulated SAT1/OsCYL4 that regulated SAT through reactive oxygen species (ROS) scavenging pathway. Our results provide a comprehensive insight into genome-wide natural variants and selection sweep underlying saline-alkali tolerance and pave avenues for SAT breeding through genome editing and genomic selection in rice.
期刊介绍:
Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community.
Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.