Unveiling the Role of Spatial Functional Trait Variations on Grassland Primary Productivity at France Scale

IF 3.4 2区 环境科学与生态学 Q2 ECOLOGY
Sara Chebbo, Cyrille Violle, Lucie Mahaut, Jens Kattge, Marc Peaucelle, Philippe Choler, Nicolas Viovy
{"title":"Unveiling the Role of Spatial Functional Trait Variations on Grassland Primary Productivity at France Scale","authors":"Sara Chebbo,&nbsp;Cyrille Violle,&nbsp;Lucie Mahaut,&nbsp;Jens Kattge,&nbsp;Marc Peaucelle,&nbsp;Philippe Choler,&nbsp;Nicolas Viovy","doi":"10.1111/jbi.15079","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aim</h3>\n \n <p>Land surface models (LSMs) currently represent each plant functional type (PFT) as an average phenotype, characterised by a set of fixed parameters. This rigid and constant representation is a limit in understanding the dynamics of highly diverse ecosystems, such as permanent grasslands, and their response to global change.</p>\n </section>\n \n <section>\n \n <h3> Location</h3>\n \n <p>France.</p>\n </section>\n \n <section>\n \n <h3> Time Period</h3>\n \n <p>2001–2019.</p>\n </section>\n \n <section>\n \n <h3> Major Taxa</h3>\n \n <p>Grassland plant species.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We incorporated spatially explicit trait variability at the France scale in the ORCHIDEE land surface model to assess how the net primary productivity (NPP) will spatially vary over the years. More precisely, we focused on three key functional traits that govern the NPP of grassland ecosystems: specific leaf area (SLA) and leaf nitrogen content (LNC), as measured traits, and leaf lifespan (LLS) as an estimated trait. Community-weighted means (CWM) were implemented in various combinations with prescribed and spatially varying traits. We compared the outcomes of each NPP simulation to remotely sensed proxies of productivity by using the MODIS satellite-driven NPP products.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The sensitivity of NPP to traits depends on climate conditions, such as temperature and water limitation. Considering trait variability decreases the NPP in the most productive regions (plains) and increases the NPP in the less productive regions (mountains) compared to the case with constant trait values. This leads to a more homogenous NPP across France. Compared to the observed MODIS NPP and FLUXCOM GPP, the simulation using varying traits improves the spatial NPP and GPP variations in several regions and most climate conditions.</p>\n </section>\n \n <section>\n \n <h3> Main Conclusions</h3>\n \n <p>Based on the existing trait data, we revealed that incorporating the CWM of traits in an LSM such as ORCHIDEE can be effectively performed. Improving the modelling and predictions by considering the relationships between biodiversity, functional biogeography, and ecosystem functioning is essential in current and future ecological research.</p>\n </section>\n </div>","PeriodicalId":15299,"journal":{"name":"Journal of Biogeography","volume":"52 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jbi.15079","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biogeography","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jbi.15079","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aim

Land surface models (LSMs) currently represent each plant functional type (PFT) as an average phenotype, characterised by a set of fixed parameters. This rigid and constant representation is a limit in understanding the dynamics of highly diverse ecosystems, such as permanent grasslands, and their response to global change.

Location

France.

Time Period

2001–2019.

Major Taxa

Grassland plant species.

Methods

We incorporated spatially explicit trait variability at the France scale in the ORCHIDEE land surface model to assess how the net primary productivity (NPP) will spatially vary over the years. More precisely, we focused on three key functional traits that govern the NPP of grassland ecosystems: specific leaf area (SLA) and leaf nitrogen content (LNC), as measured traits, and leaf lifespan (LLS) as an estimated trait. Community-weighted means (CWM) were implemented in various combinations with prescribed and spatially varying traits. We compared the outcomes of each NPP simulation to remotely sensed proxies of productivity by using the MODIS satellite-driven NPP products.

Results

The sensitivity of NPP to traits depends on climate conditions, such as temperature and water limitation. Considering trait variability decreases the NPP in the most productive regions (plains) and increases the NPP in the less productive regions (mountains) compared to the case with constant trait values. This leads to a more homogenous NPP across France. Compared to the observed MODIS NPP and FLUXCOM GPP, the simulation using varying traits improves the spatial NPP and GPP variations in several regions and most climate conditions.

Main Conclusions

Based on the existing trait data, we revealed that incorporating the CWM of traits in an LSM such as ORCHIDEE can be effectively performed. Improving the modelling and predictions by considering the relationships between biodiversity, functional biogeography, and ecosystem functioning is essential in current and future ecological research.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biogeography
Journal of Biogeography 环境科学-生态学
CiteScore
7.70
自引率
5.10%
发文量
203
审稿时长
2.2 months
期刊介绍: Papers dealing with all aspects of spatial, ecological and historical biogeography are considered for publication in Journal of Biogeography. The mission of the journal is to contribute to the growth and societal relevance of the discipline of biogeography through its role in the dissemination of biogeographical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信