Pavel Beneš, Václav Rada, Michalel Macháček, Petr Zlámal, Petr Koudelka, Daniel Kytýř, Daniel Vavřík
{"title":"Eigenmode Identification of Oscillating Cantilever Using Standard X-Ray Computed Tomography","authors":"Pavel Beneš, Václav Rada, Michalel Macháček, Petr Zlámal, Petr Koudelka, Daniel Kytýř, Daniel Vavřík","doi":"10.1007/s10921-025-01173-1","DOIUrl":null,"url":null,"abstract":"<div><p>X-ray computed tomography with laboratory imaging chains often struggles with high-speed processes, as recording a single tomographic dataset quickly enough is often a challenging task. This paper presents a method for extracting the eigenmode of a harmonically excited oscillating object based on a probabilistic analysis of its tomographic reconstruction. In the standard reconstruction of an oscillating object, where the recording of tomography data is realised over a relatively long period of time, the highest probability of the object occurrence is in its amplitudes. Based on this fact, it is possible to identify the eigenshape of the oscillating object by searching for the envelope of its motion. The identified modal shapes show good agreement with the laser Doppler vibrometer measurements. Consequently, the effectiveness of the method was demonstrated for objects that are unsuitable for traditional laser vibrometry due to their shape or surface limitations.</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"44 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10921-025-01173-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-025-01173-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
X-ray computed tomography with laboratory imaging chains often struggles with high-speed processes, as recording a single tomographic dataset quickly enough is often a challenging task. This paper presents a method for extracting the eigenmode of a harmonically excited oscillating object based on a probabilistic analysis of its tomographic reconstruction. In the standard reconstruction of an oscillating object, where the recording of tomography data is realised over a relatively long period of time, the highest probability of the object occurrence is in its amplitudes. Based on this fact, it is possible to identify the eigenshape of the oscillating object by searching for the envelope of its motion. The identified modal shapes show good agreement with the laser Doppler vibrometer measurements. Consequently, the effectiveness of the method was demonstrated for objects that are unsuitable for traditional laser vibrometry due to their shape or surface limitations.
期刊介绍:
Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.