Avoiding global deforestation by taxing land in agricultural production: the implications for global markets

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Eric C. Davis, Maros Ivanic, Brent Sohngen
{"title":"Avoiding global deforestation by taxing land in agricultural production: the implications for global markets","authors":"Eric C. Davis,&nbsp;Maros Ivanic,&nbsp;Brent Sohngen","doi":"10.1186/s13021-025-00291-7","DOIUrl":null,"url":null,"abstract":"<div><p>The projected growth in population and incomes is expected to create pressure to convert forestland into farmland. At the same time, the increasingly negative climate impacts are expected to generate further pressure to enhance the terrestrial carbon sink. Even though these goals are incompatible as reversing the deforestation trend by afforesting cropland would result in negative market impacts such as higher food prices, using the GTAP and GTM models, we find that these impacts would be relatively small if the goal of preserving 144.2 million hectares of forestland that otherwise would be converted to agricultural land by 2033 is achieved through a tax on land use in agricultural production. As to the economic price for doing so, the avoided deforestation would in most regions of the world result in less agricultural output and higher market prices. This is estimated to impact the well-being of global consumers by $119.7 billion, which translates to a global average cost of $13.78 per person in 2033.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"20 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-025-00291-7","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Balance and Management","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s13021-025-00291-7","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The projected growth in population and incomes is expected to create pressure to convert forestland into farmland. At the same time, the increasingly negative climate impacts are expected to generate further pressure to enhance the terrestrial carbon sink. Even though these goals are incompatible as reversing the deforestation trend by afforesting cropland would result in negative market impacts such as higher food prices, using the GTAP and GTM models, we find that these impacts would be relatively small if the goal of preserving 144.2 million hectares of forestland that otherwise would be converted to agricultural land by 2033 is achieved through a tax on land use in agricultural production. As to the economic price for doing so, the avoided deforestation would in most regions of the world result in less agricultural output and higher market prices. This is estimated to impact the well-being of global consumers by $119.7 billion, which translates to a global average cost of $13.78 per person in 2033.

通过对农业生产土地征税来避免全球森林砍伐:对全球市场的影响
预计人口和收入的增长将造成将林地转为农田的压力。与此同时,越来越负面的气候影响预计将产生进一步的压力,以增强陆地碳汇。尽管这些目标是不相容的,因为通过植树造林来扭转毁林趋势会导致负面的市场影响,如食品价格上涨,但使用GTAP和GTM模型,我们发现,如果通过对农业生产中的土地使用征税来实现到2033年保护1.442亿公顷林地的目标,这些影响将相对较小。至于这样做的经济代价,在世界上大多数地区,避免砍伐森林将导致农业产量减少和市场价格上涨。据估计,这将对全球消费者的福祉产生1197亿美元的影响,这意味着到2033年,全球人均成本将达到13.78美元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon Balance and Management
Carbon Balance and Management Environmental Science-Management, Monitoring, Policy and Law
CiteScore
7.60
自引率
0.00%
发文量
17
审稿时长
14 weeks
期刊介绍: Carbon Balance and Management is an open access, peer-reviewed online journal that encompasses all aspects of research aimed at developing a comprehensive policy relevant to the understanding of the global carbon cycle. The global carbon cycle involves important couplings between climate, atmospheric CO2 and the terrestrial and oceanic biospheres. The current transformation of the carbon cycle due to changes in climate and atmospheric composition is widely recognized as potentially dangerous for the biosphere and for the well-being of humankind, and therefore monitoring, understanding and predicting the evolution of the carbon cycle in the context of the whole biosphere (both terrestrial and marine) is a challenge to the scientific community. This demands interdisciplinary research and new approaches for studying geographical and temporal distributions of carbon pools and fluxes, control and feedback mechanisms of the carbon-climate system, points of intervention and windows of opportunity for managing the carbon-climate-human system. Carbon Balance and Management is a medium for researchers in the field to convey the results of their research across disciplinary boundaries. Through this dissemination of research, the journal aims to support the work of the Intergovernmental Panel for Climate Change (IPCC) and to provide governmental and non-governmental organizations with instantaneous access to continually emerging knowledge, including paradigm shifts and consensual views.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信