Measurements of Sn Thermally Enhanced Sputtering Yields at Nano-PSI

IF 1.9 4区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY
J. Cecrdle, T. W. Morgan, J. G. A. Scholte, J. Horacek
{"title":"Measurements of Sn Thermally Enhanced Sputtering Yields at Nano-PSI","authors":"J. Cecrdle,&nbsp;T. W. Morgan,&nbsp;J. G. A. Scholte,&nbsp;J. Horacek","doi":"10.1007/s10894-025-00489-0","DOIUrl":null,"url":null,"abstract":"<div><p>Capillary porous structure (CPS) based liquid metal divertors are currently being investigated as a possible alternative to the tungsten based solid plasma facing components (PFCs). The ability of CPS based technologies to withstand high heat fluxes (&gt; 20 MW/m<sup>2</sup>) has been already demonstrated in linear devices as well as tokamaks. One of the key aspects of a liquid metal divertor is the erosion of the liquid metal with the subsequent contamination of the plasma. The liquid can be eroded by physical sputtering, evaporation and thermally enhanced sputtering. The absence of a theoretical model or detailed empirical data of Sn thermally enhanced sputtering prohibits reliable predictions of Sn erosion by fusion plasma. Especially in high density tokamak plasmas, thermally enhanced sputtering appears to be the dominant contributor to total erosion. To empirically evaluate the thermally enhanced sputtering yields an experimental campaign was conducted at the Nano-PSI device (<i>T</i><sub>e</sub> = 0.3–0.8 eV, <span>\\(\\Gamma_{i} = 5 \\times 10^{18} {\\text{ m}}^{ - 2} \\;{\\text{s}}^{ - 1}\\)</span>) with Sn surfaces exposed to homogeneous plasma of various ion species (Ar, Ne, H, He). The effect of ion impact energy on the sputtering yields was studied as well by biasing of the the liquid surface in range of − 10 to − 80 V. In case of Ar, Ne and He the Sn was exposed as a free-flowing surface and for H it was exposed in a stainless-steel capillary porous structure (CPS) to negate the observed H spitting of the free liquid surface. This work presents the measured thermally enhanced sputtering yields, with focus on the observed phenomena, such as plasma species and impact energy dependency.</p></div>","PeriodicalId":634,"journal":{"name":"Journal of Fusion Energy","volume":"44 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fusion Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10894-025-00489-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Capillary porous structure (CPS) based liquid metal divertors are currently being investigated as a possible alternative to the tungsten based solid plasma facing components (PFCs). The ability of CPS based technologies to withstand high heat fluxes (> 20 MW/m2) has been already demonstrated in linear devices as well as tokamaks. One of the key aspects of a liquid metal divertor is the erosion of the liquid metal with the subsequent contamination of the plasma. The liquid can be eroded by physical sputtering, evaporation and thermally enhanced sputtering. The absence of a theoretical model or detailed empirical data of Sn thermally enhanced sputtering prohibits reliable predictions of Sn erosion by fusion plasma. Especially in high density tokamak plasmas, thermally enhanced sputtering appears to be the dominant contributor to total erosion. To empirically evaluate the thermally enhanced sputtering yields an experimental campaign was conducted at the Nano-PSI device (Te = 0.3–0.8 eV, \(\Gamma_{i} = 5 \times 10^{18} {\text{ m}}^{ - 2} \;{\text{s}}^{ - 1}\)) with Sn surfaces exposed to homogeneous plasma of various ion species (Ar, Ne, H, He). The effect of ion impact energy on the sputtering yields was studied as well by biasing of the the liquid surface in range of − 10 to − 80 V. In case of Ar, Ne and He the Sn was exposed as a free-flowing surface and for H it was exposed in a stainless-steel capillary porous structure (CPS) to negate the observed H spitting of the free liquid surface. This work presents the measured thermally enhanced sputtering yields, with focus on the observed phenomena, such as plasma species and impact energy dependency.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Fusion Energy
Journal of Fusion Energy 工程技术-核科学技术
CiteScore
2.20
自引率
0.00%
发文量
24
审稿时长
2.3 months
期刊介绍: The Journal of Fusion Energy features original research contributions and review papers examining and the development and enhancing the knowledge base of thermonuclear fusion as a potential power source. It is designed to serve as a journal of record for the publication of original research results in fundamental and applied physics, applied science and technological development. The journal publishes qualified papers based on peer reviews. This journal also provides a forum for discussing broader policies and strategies that have played, and will continue to play, a crucial role in fusion programs. In keeping with this theme, readers will find articles covering an array of important matters concerning strategy and program direction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信