Effect of Nitriding on the Microstructure and Mechanical Properties of AA7075 Alloy

IF 0.6 4区 材料科学 Q4 METALLURGY & METALLURGICAL ENGINEERING
I. A. Panchenko, S. V. Konovalov, V. K. Drobyshev, D. N. Labinsky, Y. G. Khusainov, A. Yu. Nazarov
{"title":"Effect of Nitriding on the Microstructure and Mechanical Properties of AA7075 Alloy","authors":"I. A. Panchenko,&nbsp;S. V. Konovalov,&nbsp;V. K. Drobyshev,&nbsp;D. N. Labinsky,&nbsp;Y. G. Khusainov,&nbsp;A. Yu. Nazarov","doi":"10.1134/S1067821225600048","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigated the 7075 aluminum alloy obtained by casting in the as-delivered condition and after nitriding the alloy in an arc discharge using a plasma source with a hot cathode at a temperature of 350°C for 2 h in a gas mixture of 50% argon and 50% nitrogen, 0.5 Pa, 500 V. The surface of the sample after nitriding was represented by a grain structure with a nonuniform distribution of manganese, iron, and oxygen atoms. Nitriding contributed to an increase in the nanohardness of the material to 1.4 GPa and the Young’s modulus to 132 GPa, owing to the formation of a modified layer after nitriding the alloy surface. The depth of the nitrided layer of the studied aluminum samples was nonuniform and varied from 5 to 10 µm; in the cross section of the studied layer, areas with increased oxygen and manganese content were detected using the elemental mapping method. The average value of the crystal lattice parameter after nitriding of the material changed from 4.035 to 4.047 Å. This increase in the crystal lattice parameter may be associated with the formation of tensile macrostresses, which affect the mechanical properties of the material.</p>","PeriodicalId":765,"journal":{"name":"Russian Journal of Non-Ferrous Metals","volume":"65 3","pages":"162 - 169"},"PeriodicalIF":0.6000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Non-Ferrous Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1067821225600048","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigated the 7075 aluminum alloy obtained by casting in the as-delivered condition and after nitriding the alloy in an arc discharge using a plasma source with a hot cathode at a temperature of 350°C for 2 h in a gas mixture of 50% argon and 50% nitrogen, 0.5 Pa, 500 V. The surface of the sample after nitriding was represented by a grain structure with a nonuniform distribution of manganese, iron, and oxygen atoms. Nitriding contributed to an increase in the nanohardness of the material to 1.4 GPa and the Young’s modulus to 132 GPa, owing to the formation of a modified layer after nitriding the alloy surface. The depth of the nitrided layer of the studied aluminum samples was nonuniform and varied from 5 to 10 µm; in the cross section of the studied layer, areas with increased oxygen and manganese content were detected using the elemental mapping method. The average value of the crystal lattice parameter after nitriding of the material changed from 4.035 to 4.047 Å. This increase in the crystal lattice parameter may be associated with the formation of tensile macrostresses, which affect the mechanical properties of the material.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Journal of Non-Ferrous Metals
Russian Journal of Non-Ferrous Metals METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
1.90
自引率
12.50%
发文量
59
审稿时长
3 months
期刊介绍: Russian Journal of Non-Ferrous Metals is a journal the main goal of which is to achieve new knowledge in the following topics: extraction metallurgy, hydro- and pirometallurgy, casting, plastic deformation, metallography and heat treatment, powder metallurgy and composites, self-propagating high-temperature synthesis, surface engineering and advanced protected coatings, environments, and energy capacity in non-ferrous metallurgy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信