The Relationship between Temperature and Reinforcement Amount in the Wear Performance of TiC Reinforced AMCs Produced by Mechanical Alloying Method

IF 0.6 4区 材料科学 Q4 METALLURGY & METALLURGICAL ENGINEERING
Dogan Simsek, Dursun Ozyurek
{"title":"The Relationship between Temperature and Reinforcement Amount in the Wear Performance of TiC Reinforced AMCs Produced by Mechanical Alloying Method","authors":"Dogan Simsek,&nbsp;Dursun Ozyurek","doi":"10.1134/S1067821224600960","DOIUrl":null,"url":null,"abstract":"<p>In this study, the wear performance of TiC reinforced A356 matrix composite materials produced by the mechanical alloying method at high temperatures was investigated. As a solid lubricant, 2% graphite, and four different amounts (3, 6, 9, and 12%) of TiC were added to the A356 alloy matrix. The prepared powders were mechanically alloyed in a planetary mill for 4 h. The composite powders produced were cold shaped (750 MPa) to obtain green compacts. The green compacts produced were sintered at 550°C for 60 min in a vacuum environment of 10<sup>–6</sup> mbar. TiC reinforced AMCs have been characterized by microstructure, hardness, and density measurements. Wear tests were carried out in a standard pin on disc type wear tester by adding a temperature module. In wear tests, two different loads (10 and 30 N), five different temperatures (20, 100, 180, 260, and 340°C), and three different sliding distances (53, 72, and 94 m) have been used. As a result of microstructure studies, it has been observed that the reinforcement material exhibits a homogeneous distribution in the structure. In hardness and density measurements, the highest hardness and density were obtained in the composite material with 12% TiC added. As a result of wear tests, the lowest weight loss was obtained in the composite material with 12% TiC added at all operating temperatures.</p>","PeriodicalId":765,"journal":{"name":"Russian Journal of Non-Ferrous Metals","volume":"65 3","pages":"133 - 141"},"PeriodicalIF":0.6000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Non-Ferrous Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1067821224600960","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the wear performance of TiC reinforced A356 matrix composite materials produced by the mechanical alloying method at high temperatures was investigated. As a solid lubricant, 2% graphite, and four different amounts (3, 6, 9, and 12%) of TiC were added to the A356 alloy matrix. The prepared powders were mechanically alloyed in a planetary mill for 4 h. The composite powders produced were cold shaped (750 MPa) to obtain green compacts. The green compacts produced were sintered at 550°C for 60 min in a vacuum environment of 10–6 mbar. TiC reinforced AMCs have been characterized by microstructure, hardness, and density measurements. Wear tests were carried out in a standard pin on disc type wear tester by adding a temperature module. In wear tests, two different loads (10 and 30 N), five different temperatures (20, 100, 180, 260, and 340°C), and three different sliding distances (53, 72, and 94 m) have been used. As a result of microstructure studies, it has been observed that the reinforcement material exhibits a homogeneous distribution in the structure. In hardness and density measurements, the highest hardness and density were obtained in the composite material with 12% TiC added. As a result of wear tests, the lowest weight loss was obtained in the composite material with 12% TiC added at all operating temperatures.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Journal of Non-Ferrous Metals
Russian Journal of Non-Ferrous Metals METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
1.90
自引率
12.50%
发文量
59
审稿时长
3 months
期刊介绍: Russian Journal of Non-Ferrous Metals is a journal the main goal of which is to achieve new knowledge in the following topics: extraction metallurgy, hydro- and pirometallurgy, casting, plastic deformation, metallography and heat treatment, powder metallurgy and composites, self-propagating high-temperature synthesis, surface engineering and advanced protected coatings, environments, and energy capacity in non-ferrous metallurgy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信