Rapid synthesis of biocompatible alginates for adsorption of chemical warfare agents

IF 2.8 4区 工程技术 Q2 POLYMER SCIENCE
Jaekyung Bae, Sang Myeon Lee, Min-Kun Kim
{"title":"Rapid synthesis of biocompatible alginates for adsorption of chemical warfare agents","authors":"Jaekyung Bae,&nbsp;Sang Myeon Lee,&nbsp;Min-Kun Kim","doi":"10.1007/s13233-024-00332-z","DOIUrl":null,"url":null,"abstract":"<div><p>The demand for lightweight respirators necessitates the development of high-performance composites capable of removing chemical agents. However, most of these materials either pose risks to human health or involve toxic substances in their production. This study investigates the adsorption of cyanogen chloride and sarin onto spherical composites synthesized via a biocompatible and rapid alginate-based method. The incorporation of metal and triethylenediamine, combined with highly porous activated carbon powder, significantly enhances the adsorption capacity of the composite. Rapid synthesis through ion exchange maintains a highly specific surface area. Moreover, the impregnation of metal and triethylenediamine further augments both the physical and chemical adsorption performance of the composite. The properties of the composites were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Brunauer–Emmett–Teller analyses. Breakthrough time tests indicated that the impregnated alginate-based composites exhibited superior physical (143%) and chemical (128%) adsorption capabilities compared to military-activated carbon. This study presents a potential biocompatible alginate-based synthesis technique to improve adsorption while enabling easy and rapid adjustment of particle size.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":688,"journal":{"name":"Macromolecular Research","volume":"33 3","pages":"321 - 330"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13233-024-00332-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The demand for lightweight respirators necessitates the development of high-performance composites capable of removing chemical agents. However, most of these materials either pose risks to human health or involve toxic substances in their production. This study investigates the adsorption of cyanogen chloride and sarin onto spherical composites synthesized via a biocompatible and rapid alginate-based method. The incorporation of metal and triethylenediamine, combined with highly porous activated carbon powder, significantly enhances the adsorption capacity of the composite. Rapid synthesis through ion exchange maintains a highly specific surface area. Moreover, the impregnation of metal and triethylenediamine further augments both the physical and chemical adsorption performance of the composite. The properties of the composites were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Brunauer–Emmett–Teller analyses. Breakthrough time tests indicated that the impregnated alginate-based composites exhibited superior physical (143%) and chemical (128%) adsorption capabilities compared to military-activated carbon. This study presents a potential biocompatible alginate-based synthesis technique to improve adsorption while enabling easy and rapid adjustment of particle size.

Graphical abstract

生物相容性海藻酸盐吸附化学战剂的快速合成
对轻型呼吸器的需求要求开发能够去除化学剂的高性能复合材料。然而,这些材料中的大多数要么对人类健康构成风险,要么在生产过程中涉及有毒物质。本文研究了生物相容性和快速海藻酸合成的球形复合材料对氯化氰和沙林的吸附。金属和三乙二胺的掺入,结合高孔活性炭粉,显著增强了复合材料的吸附能力。通过离子交换快速合成保持高比表面积。此外,金属和三乙二胺的浸渍进一步增强了复合材料的物理和化学吸附性能。利用扫描电子显微镜、能量色散x射线光谱和布鲁诺尔-埃米特-泰勒分析对复合材料的性能进行了表征。突破时间测试表明,与军用活性炭相比,浸渍藻酸盐基复合材料具有更好的物理(143%)和化学(128%)吸附能力。本研究提出了一种潜在的生物相容性海藻酸盐合成技术,以提高吸附性能,同时使颗粒大小易于快速调节。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Research
Macromolecular Research 工程技术-高分子科学
CiteScore
4.70
自引率
8.30%
发文量
100
审稿时长
1.3 months
期刊介绍: Original research on all aspects of polymer science, engineering and technology, including nanotechnology Presents original research articles on all aspects of polymer science, engineering and technology Coverage extends to such topics as nanotechnology, biotechnology and information technology The English-language journal of the Polymer Society of Korea Macromolecular Research is a scientific journal published monthly by the Polymer Society of Korea. Macromolecular Research publishes original researches on all aspects of polymer science, engineering, and technology as well as new emerging technologies using polymeric materials including nanotechnology, biotechnology, and information technology in forms of Articles, Communications, Notes, Reviews, and Feature articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信