{"title":"Genomic insights of Dalbergia latifolia (Indian rosewood): applications in conservation and beyond","authors":"T. N. Manohara, S. M. Balakrishna, H. S. Suresh","doi":"10.1007/s00468-025-02617-x","DOIUrl":null,"url":null,"abstract":"<div><h3>Key Message</h3><p>The de novo genome sequencing of <i>Dalbergia latifolia</i> (Indian rosewood) reveals crucial genetic insights, aiding conservation, sustainable timber production, and scientific research. The high-quality draft genome identifies key pathways and markers for improving disease resistance and timber quality, supporting the protection and sustainable use of this important species.</p><h3>Abstract</h3><p>Wood, as a natural and sustainable energy source, serves as an eco-efficient alternative to fossil fuels, and is playing a vital role in stabilizing woody plants and transporting water to all plant parts. Over the last few decades, our knowledge of cellular wood formation (xylogenesis) has significantly increased. <i>Dalbergia latifolia,</i> commonly known as ‘Indian rosewood’, emerges as a premier timber species from the Indo-Malaysian region. This slow-growing tree is prized for its durable timber, which is stronger and harder than teak, and for its natural resistance to pests and fungal attacks. However, escalating demand for rosewood, particularly from China, has led to increased illegal exploitation and listing under CITES Appendix 2. By the end of 2020, <i>D. latifolia</i> was assessed as globally vulnerable by the IUCN Red List of Threatened Species under criteria A1cd. Key threats in India include inadequate regeneration and slow growth rates due to rising commercial demand. In response, India has banned the export of logs and sawn wood from this species. Despite its ecological and economic significance, genome-level information for <i>D. latifolia</i> has been lacking, hindering scientific research and conservation efforts. This study presents a comprehensive de novo genome sequencing and assembly of <i>D. latifolia</i>, providing valuable insights into its genetic makeup and potential applications. We generated 22,319 contigs totaling 613.95 Mb with high completeness (95%) and an identification rate of 92% for single-copy BUSCO genes.</p></div>","PeriodicalId":805,"journal":{"name":"Trees","volume":"39 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trees","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1007/s00468-025-02617-x","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Key Message
The de novo genome sequencing of Dalbergia latifolia (Indian rosewood) reveals crucial genetic insights, aiding conservation, sustainable timber production, and scientific research. The high-quality draft genome identifies key pathways and markers for improving disease resistance and timber quality, supporting the protection and sustainable use of this important species.
Abstract
Wood, as a natural and sustainable energy source, serves as an eco-efficient alternative to fossil fuels, and is playing a vital role in stabilizing woody plants and transporting water to all plant parts. Over the last few decades, our knowledge of cellular wood formation (xylogenesis) has significantly increased. Dalbergia latifolia, commonly known as ‘Indian rosewood’, emerges as a premier timber species from the Indo-Malaysian region. This slow-growing tree is prized for its durable timber, which is stronger and harder than teak, and for its natural resistance to pests and fungal attacks. However, escalating demand for rosewood, particularly from China, has led to increased illegal exploitation and listing under CITES Appendix 2. By the end of 2020, D. latifolia was assessed as globally vulnerable by the IUCN Red List of Threatened Species under criteria A1cd. Key threats in India include inadequate regeneration and slow growth rates due to rising commercial demand. In response, India has banned the export of logs and sawn wood from this species. Despite its ecological and economic significance, genome-level information for D. latifolia has been lacking, hindering scientific research and conservation efforts. This study presents a comprehensive de novo genome sequencing and assembly of D. latifolia, providing valuable insights into its genetic makeup and potential applications. We generated 22,319 contigs totaling 613.95 Mb with high completeness (95%) and an identification rate of 92% for single-copy BUSCO genes.
期刊介绍:
Trees - Structure and Function publishes original articles on the physiology, biochemistry, functional anatomy, structure and ecology of trees and other woody plants. Also presented are articles concerned with pathology and technological problems, when they contribute to the basic understanding of structure and function of trees. In addition to original articles and short communications, the journal publishes reviews on selected topics concerning the structure and function of trees.