{"title":"Combined skin injury model from airblast overpressure and seawater immersion in rats: establishment, characterization, and mechanistic insights","authors":"Jinpeng Du, Zhao Li, Yi Kong, Wei Song, Zhongming Chen, Mengde Zhang, Yuyan Huang, Chao Zhang, Xu Guo, Linhao Hou, Yaxin Tan, Liting Liang, Yuzhen Wang, Yu Feng, Qinghua Liu, Jianjun Li, Dongzhen Zhu, Xiaobing Fu, Sha Huang","doi":"10.1007/s10735-025-10379-6","DOIUrl":null,"url":null,"abstract":"<div><p>In maritime operations, individuals often face the threat of combined injury caused by airblast overpressure and seawater immersion. Airblast overpressure, induced by explosions, leads to significant internal damage despite the absence of visible open wounds. Seawater immersion exacerbates injuries due to its high osmolarity, microbial content, and thermal conductivity. Given the critical role of the skin as the body’s largest organ, understanding its specific injuries in this scenario is imperative but currently underexplored. To bridge this gap, the study developed a novel rat skin combined injury model (RSCIM) in which rats were exposed to calibrated airblast overpressure followed by immediate seawater immersion. Physical simulations, histopathological examinations, and immunological assessments were used to confirm the model’s accuracy. Specifically, finite element analysis reveals that the epidermal layer could effectively disperse and resist the immediate effects of overpressure. Histologically, the epidermal layer after combined injury maintained a continuous and complete structure. The collagen fibers of dermis were dispersed and broken. There were scattered capillaries, red blood cells and no skin appendages within the adipose layer. The muscle layer was manifested by deformation and breakage of muscle fibers. The fluorescence intensity of iNOS tended to decrease as the distance from the explosion source increased, which demonstrated significant inflammatory effects in the skin with combined injury. Furthermore, the transcriptome sequencing data revealed major physiological changes caused by combined injury, including inflammatory response, ion transport, biomechanical response, apoptosis, etc. Notably, S100A9 serves as a critical marker for combined injuries in RSCIM, but its expression characteristics and localization during tissue injury still need to be further explored. The model provides a robust foundation for exploring the combined injury mechanisms of airblast overpressure and seawater immersion and developing targeted therapeutic approaches.</p></div>","PeriodicalId":650,"journal":{"name":"Journal of Molecular Histology","volume":"56 2","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Histology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10735-025-10379-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In maritime operations, individuals often face the threat of combined injury caused by airblast overpressure and seawater immersion. Airblast overpressure, induced by explosions, leads to significant internal damage despite the absence of visible open wounds. Seawater immersion exacerbates injuries due to its high osmolarity, microbial content, and thermal conductivity. Given the critical role of the skin as the body’s largest organ, understanding its specific injuries in this scenario is imperative but currently underexplored. To bridge this gap, the study developed a novel rat skin combined injury model (RSCIM) in which rats were exposed to calibrated airblast overpressure followed by immediate seawater immersion. Physical simulations, histopathological examinations, and immunological assessments were used to confirm the model’s accuracy. Specifically, finite element analysis reveals that the epidermal layer could effectively disperse and resist the immediate effects of overpressure. Histologically, the epidermal layer after combined injury maintained a continuous and complete structure. The collagen fibers of dermis were dispersed and broken. There were scattered capillaries, red blood cells and no skin appendages within the adipose layer. The muscle layer was manifested by deformation and breakage of muscle fibers. The fluorescence intensity of iNOS tended to decrease as the distance from the explosion source increased, which demonstrated significant inflammatory effects in the skin with combined injury. Furthermore, the transcriptome sequencing data revealed major physiological changes caused by combined injury, including inflammatory response, ion transport, biomechanical response, apoptosis, etc. Notably, S100A9 serves as a critical marker for combined injuries in RSCIM, but its expression characteristics and localization during tissue injury still need to be further explored. The model provides a robust foundation for exploring the combined injury mechanisms of airblast overpressure and seawater immersion and developing targeted therapeutic approaches.
期刊介绍:
The Journal of Molecular Histology publishes results of original research on the localization and expression of molecules in animal cells, tissues and organs. Coverage includes studies describing novel cellular or ultrastructural distributions of molecules which provide insight into biochemical or physiological function, development, histologic structure and disease processes.
Major research themes of particular interest include:
- Cell-Cell and Cell-Matrix Interactions;
- Connective Tissues;
- Development and Disease;
- Neuroscience.
Please note that the Journal of Molecular Histology does not consider manuscripts dealing with the application of immunological or other probes on non-standard laboratory animal models unless the results are clearly of significant and general biological importance.
The Journal of Molecular Histology publishes full-length original research papers, review articles, short communications and letters to the editors. All manuscripts are typically reviewed by two independent referees. The Journal of Molecular Histology is a continuation of The Histochemical Journal.