Mechanism of Lubricating Action of Model Systems with Additives of Carbon Nanostructures under Hard Friction Conditions

IF 0.5 4区 工程技术 Q4 ENGINEERING, MECHANICAL
M. A. Shilov, A. I. Smirnova, S. Yu. Kupreenko, A. A. Gvozdev, N. N. Rozhkova, T. P. Dyachkova, D. N. Stolbov, S. V. Savilov, N. V. Usol’tseva
{"title":"Mechanism of Lubricating Action of Model Systems with Additives of Carbon Nanostructures under Hard Friction Conditions","authors":"M. A. Shilov,&nbsp;A. I. Smirnova,&nbsp;S. Yu. Kupreenko,&nbsp;A. A. Gvozdev,&nbsp;N. N. Rozhkova,&nbsp;T. P. Dyachkova,&nbsp;D. N. Stolbov,&nbsp;S. V. Savilov,&nbsp;N. V. Usol’tseva","doi":"10.3103/S1068366625700047","DOIUrl":null,"url":null,"abstract":"<p>The mechanism of the lubricating effect of two model lubricants based on medical vaseline with 0.5 wt % additives of carbon nanostructures (CNSs), namely graphene oxide (GO) and shungite nanocarbon (Sh), under hard friction conditions (2070 SMT-1 friction machine, “disc–roller” friction pair made of hardened ShKh15 steel, load 2000 N) has been established. The friction surfaces were examined by confocal laser microscopy and scanning electron microscopy. The elemental composition of the friction surfaces was determined with the help of energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). The contribution of the chemical component (formation of iron oxides) to the anti-wear process was analyzed. It was found that despite the difference in the spatial structure of the used CNSs, the processes occurring in the friction zone are chemically similar. It has been demonstrated that with the use of both model lubricants, protective oxide films consisting of iron oxides (FeO, Fe<sub>2</sub>O<sub>3</sub>, Fe<sub>3</sub>O<sub>4</sub>) are formed in the contact zone. The chemical composition of the oxide film and the quantitative ratio of the formed iron oxides are not significantly affected by the type of CNS additives used. The results, together with the studies we performed earlier, demonstrate that the mechanical component, associated with the spatial organization of CNS additive, makes the decisive contribution to the anti-wear process under severe friction conditions.</p>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":"45 6","pages":"337 - 343"},"PeriodicalIF":0.5000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Friction and Wear","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.3103/S1068366625700047","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The mechanism of the lubricating effect of two model lubricants based on medical vaseline with 0.5 wt % additives of carbon nanostructures (CNSs), namely graphene oxide (GO) and shungite nanocarbon (Sh), under hard friction conditions (2070 SMT-1 friction machine, “disc–roller” friction pair made of hardened ShKh15 steel, load 2000 N) has been established. The friction surfaces were examined by confocal laser microscopy and scanning electron microscopy. The elemental composition of the friction surfaces was determined with the help of energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). The contribution of the chemical component (formation of iron oxides) to the anti-wear process was analyzed. It was found that despite the difference in the spatial structure of the used CNSs, the processes occurring in the friction zone are chemically similar. It has been demonstrated that with the use of both model lubricants, protective oxide films consisting of iron oxides (FeO, Fe2O3, Fe3O4) are formed in the contact zone. The chemical composition of the oxide film and the quantitative ratio of the formed iron oxides are not significantly affected by the type of CNS additives used. The results, together with the studies we performed earlier, demonstrate that the mechanical component, associated with the spatial organization of CNS additive, makes the decisive contribution to the anti-wear process under severe friction conditions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Friction and Wear
Journal of Friction and Wear ENGINEERING, MECHANICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
1.50
自引率
28.60%
发文量
21
审稿时长
6-12 weeks
期刊介绍: Journal of Friction and Wear is intended to bring together researchers and practitioners working in tribology. It provides novel information on science, practice, and technology of lubrication, wear prevention, and friction control. Papers cover tribological problems of physics, chemistry, materials science, and mechanical engineering, discussing issues from a fundamental or technological point of view.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信