A novel optical design for wide-field imaging in X-ray astronomy

IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Neeraj K. Tiwari, Santosh V. Vadawale, N. P. S. Mithun
{"title":"A novel optical design for wide-field imaging in X-ray astronomy","authors":"Neeraj K. Tiwari,&nbsp;Santosh V. Vadawale,&nbsp;N. P. S. Mithun","doi":"10.1007/s10686-025-09992-w","DOIUrl":null,"url":null,"abstract":"<div><p>Over the decades, astronomical X-ray telescopes have utilized the Wolter type-1 optical design, which provides stigmatic imaging in axial direction but suffers from coma and higher-order aberrations for off-axis sources. The Wolter-Schwarzschild design, with stigmatic imaging in the axial direction, while suffering from higher-order aberrations, is corrected for coma, thus performing better than the Wolter type-1. The Wolter type-1 and Wolter-Schwarzschild designs are optimized for on-axis but have reduced angular resolution when averaged over a wide field of view, with the averaging weighted by the area covered in the field of view. An optical design that maximizes angular resolution at the edge of the field of view rather than at the center is more suitable for wide-field X-ray telescopes required for deep-sky astronomical surveys or solar observations. A Hyperboloid-Hyperboloid optical design can compromise axial resolution to enhance field angle resolution, hence providing improved area-weighted average angular resolution over the Wolter-Schwarzschild design, but only for fields of view exceeding a specific size. Here, we introduce a new optical design that is free from coma aberration and capable of maximizing angular resolution at any desired field angle. This design consistently outperforms Wolter-1, Wolter-Schwarzschild, and Hyperboloid-Hyperboloid designs when averaged over any field of view size. The improvement in performance remains consistent across variations in other telescope parameters such as diameter, focal length, and mirror lengths. By utilizing this new optical design, we also present a design for a full-disk imaging solar X-ray telescope.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10686-025-09992-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Over the decades, astronomical X-ray telescopes have utilized the Wolter type-1 optical design, which provides stigmatic imaging in axial direction but suffers from coma and higher-order aberrations for off-axis sources. The Wolter-Schwarzschild design, with stigmatic imaging in the axial direction, while suffering from higher-order aberrations, is corrected for coma, thus performing better than the Wolter type-1. The Wolter type-1 and Wolter-Schwarzschild designs are optimized for on-axis but have reduced angular resolution when averaged over a wide field of view, with the averaging weighted by the area covered in the field of view. An optical design that maximizes angular resolution at the edge of the field of view rather than at the center is more suitable for wide-field X-ray telescopes required for deep-sky astronomical surveys or solar observations. A Hyperboloid-Hyperboloid optical design can compromise axial resolution to enhance field angle resolution, hence providing improved area-weighted average angular resolution over the Wolter-Schwarzschild design, but only for fields of view exceeding a specific size. Here, we introduce a new optical design that is free from coma aberration and capable of maximizing angular resolution at any desired field angle. This design consistently outperforms Wolter-1, Wolter-Schwarzschild, and Hyperboloid-Hyperboloid designs when averaged over any field of view size. The improvement in performance remains consistent across variations in other telescope parameters such as diameter, focal length, and mirror lengths. By utilizing this new optical design, we also present a design for a full-disk imaging solar X-ray telescope.

一种用于x射线天文学宽视场成像的新型光学设计
几十年来,天文x射线望远镜采用了Wolter -1型光学设计,这种设计在轴向上提供了污名化成像,但在离轴光源上存在彗差和高阶像差。Wolter- schwarzschild设计,具有轴向的污名化成像,同时遭受高阶像差,校正了彗差,因此性能优于Wolter- 1型。Wolter type-1和Wolter- schwarzschild设计在轴上进行了优化,但在宽视场上平均时,角分辨率会降低,平均值由视场中覆盖的面积加权。在视场边缘而不是中心最大化角分辨率的光学设计更适合用于深空天文调查或太阳观测所需的宽视场x射线望远镜。双曲面光学设计可以降低轴向分辨率以提高视场角分辨率,从而提供比woltter - schwarzschild设计更好的面积加权平均角分辨率,但仅适用于超过特定尺寸的视场。在这里,我们介绍了一种新的光学设计,它没有彗差,能够在任何期望的视场角度最大化角分辨率。当在任何视场尺寸上平均时,这种设计始终优于Wolter-1, Wolter-Schwarzschild和双曲面-双曲面设计。在其他望远镜参数(如直径、焦距和反射镜长度)的变化中,性能的改善保持一致。利用这种新的光学设计,我们还提出了一种全盘成像太阳x射线望远镜的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Experimental Astronomy
Experimental Astronomy 地学天文-天文与天体物理
CiteScore
5.30
自引率
3.30%
发文量
57
审稿时长
6-12 weeks
期刊介绍: Many new instruments for observing astronomical objects at a variety of wavelengths have been and are continually being developed. Furthermore, a vast amount of effort is being put into the development of new techniques for data analysis in order to cope with great streams of data collected by these instruments. Experimental Astronomy acts as a medium for the publication of papers of contemporary scientific interest on astrophysical instrumentation and methods necessary for the conduct of astronomy at all wavelength fields. Experimental Astronomy publishes full-length articles, research letters and reviews on developments in detection techniques, instruments, and data analysis and image processing techniques. Occasional special issues are published, giving an in-depth presentation of the instrumentation and/or analysis connected with specific projects, such as satellite experiments or ground-based telescopes, or of specialized techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信