Mohamed J. Saadh, Adil Ismael Mohammed, Ali Fawzi Al-Hussainy, Jayanti Makasana, Raman Kumar, Nagaraj Patil, Ankur Kulshreshta, Ruqayyah Haider Ghani, Masoud Alajmi
{"title":"Adsorption of arsenic gas on aluminum phosphorus nanotubes: a combined thermodynamic and theoretical study","authors":"Mohamed J. Saadh, Adil Ismael Mohammed, Ali Fawzi Al-Hussainy, Jayanti Makasana, Raman Kumar, Nagaraj Patil, Ankur Kulshreshta, Ruqayyah Haider Ghani, Masoud Alajmi","doi":"10.1007/s11051-025-06275-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a combination of ab initio calculation (density functional theory) and a thermodynamic approach was applied to investigate the properties of arsenic in exhaust gas emitted from coal-based power plants in various temperature ranges. Also, the mechanism of interaction of aluminum phosphorus nanotube (AlPNT) with various arsenic moieties in the gas phase was studied. The stock gas is rich in trivalent arsenic (As<sup>3+</sup>), while the temperature can remarkably alter its morphological distribution. In the case of temperature < 850 K, the trigonal bipyramid form is the governing structure for trioxide moieties. On the other hand, for temperature > 850 K, the dominant structure is chain type rather than trigonal bipyramid. This work is devoted to confirming the possibility of arsenic removal from the exhaust gas by using AlPNT as an adsorbent. Also, it should be mentioned that compared with the AlPNTs surface’s performance is high.</p></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"27 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoparticle Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11051-025-06275-5","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a combination of ab initio calculation (density functional theory) and a thermodynamic approach was applied to investigate the properties of arsenic in exhaust gas emitted from coal-based power plants in various temperature ranges. Also, the mechanism of interaction of aluminum phosphorus nanotube (AlPNT) with various arsenic moieties in the gas phase was studied. The stock gas is rich in trivalent arsenic (As3+), while the temperature can remarkably alter its morphological distribution. In the case of temperature < 850 K, the trigonal bipyramid form is the governing structure for trioxide moieties. On the other hand, for temperature > 850 K, the dominant structure is chain type rather than trigonal bipyramid. This work is devoted to confirming the possibility of arsenic removal from the exhaust gas by using AlPNT as an adsorbent. Also, it should be mentioned that compared with the AlPNTs surface’s performance is high.
期刊介绍:
The objective of the Journal of Nanoparticle Research is to disseminate knowledge of the physical, chemical and biological phenomena and processes in structures that have at least one lengthscale ranging from molecular to approximately 100 nm (or submicron in some situations), and exhibit improved and novel properties that are a direct result of their small size.
Nanoparticle research is a key component of nanoscience, nanoengineering and nanotechnology.
The focus of the Journal is on the specific concepts, properties, phenomena, and processes related to particles, tubes, layers, macromolecules, clusters and other finite structures of the nanoscale size range. Synthesis, assembly, transport, reactivity, and stability of such structures are considered. Development of in-situ and ex-situ instrumentation for characterization of nanoparticles and their interfaces should be based on new principles for probing properties and phenomena not well understood at the nanometer scale. Modeling and simulation may include atom-based quantum mechanics; molecular dynamics; single-particle, multi-body and continuum based models; fractals; other methods suitable for modeling particle synthesis, assembling and interaction processes. Realization and application of systems, structures and devices with novel functions obtained via precursor nanoparticles is emphasized. Approaches may include gas-, liquid-, solid-, and vacuum-based processes, size reduction, chemical- and bio-self assembly. Contributions include utilization of nanoparticle systems for enhancing a phenomenon or process and particle assembling into hierarchical structures, as well as formulation and the administration of drugs. Synergistic approaches originating from different disciplines and technologies, and interaction between the research providers and users in this field, are encouraged.