The Yarrowia lipolytica Ribosomal Promoter pRPL25 as a Promising Object for Metabolic Engineering of Production Strains

IF 1 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
A. A. Cherenkova, B. V. Sviridov, T. K. Dvoryanchikova, O. E. Melkina
{"title":"The Yarrowia lipolytica Ribosomal Promoter pRPL25 as a Promising Object for Metabolic Engineering of Production Strains","authors":"A. A. Cherenkova,&nbsp;B. V. Sviridov,&nbsp;T. K. Dvoryanchikova,&nbsp;O. E. Melkina","doi":"10.1134/S0003683824700224","DOIUrl":null,"url":null,"abstract":"<p> Promoters are crucial components of yeast production strains in metabolic engineering. Due to its high activity, the promoter of the <i>RPL25</i> gene, which encodes the L25 protein of the large ribosomal subunit, is a promising object for investigation and optimization. Here, to investigate the <i>Yarrowia lipolytica</i> pRPL25 promoter structure, a randomized library of its sequences was generated in 100 nucleotide increments. The strength of the obtained promoters was evaluated using the green fluorescent protein as a reporter. The results showed that the minimum functional length of the studied pRPL25 derivatives was 199 bp, and the optimal functional length was 497 bp. When the sequence was shortened to 400 bp, the expression level of the reporter decreased significantly. Based on the above, we propose that the 400–500 bp region of <i>pRPL25</i> comprises an upstream activating sequence (UAS). The pRPL25 promoter and its derivatives potentially can be used in bioengineering to create metabolic pathways with a precise level of gene expression. Strains constructed on their basis may be more efficient producers of target compounds compared to classical expression systems such as <i>Saccharomyces cerevisiae.</i></p>","PeriodicalId":466,"journal":{"name":"Applied Biochemistry and Microbiology","volume":"60 9","pages":"1623 - 1630"},"PeriodicalIF":1.0000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1134/S0003683824700224","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Promoters are crucial components of yeast production strains in metabolic engineering. Due to its high activity, the promoter of the RPL25 gene, which encodes the L25 protein of the large ribosomal subunit, is a promising object for investigation and optimization. Here, to investigate the Yarrowia lipolytica pRPL25 promoter structure, a randomized library of its sequences was generated in 100 nucleotide increments. The strength of the obtained promoters was evaluated using the green fluorescent protein as a reporter. The results showed that the minimum functional length of the studied pRPL25 derivatives was 199 bp, and the optimal functional length was 497 bp. When the sequence was shortened to 400 bp, the expression level of the reporter decreased significantly. Based on the above, we propose that the 400–500 bp region of pRPL25 comprises an upstream activating sequence (UAS). The pRPL25 promoter and its derivatives potentially can be used in bioengineering to create metabolic pathways with a precise level of gene expression. Strains constructed on their basis may be more efficient producers of target compounds compared to classical expression systems such as Saccharomyces cerevisiae.

Abstract Image

多脂耶氏菌核糖体启动子pRPL25作为生产菌株代谢工程的有前景的对象
启动子是酵母生产菌株代谢工程中的重要组成部分。RPL25基因的启动子编码核糖体大亚基的L25蛋白,由于其高活性,是一个很有前途的研究和优化对象。为了研究多脂耶氏菌pRPL25启动子结构,以100个核苷酸为单位随机生成了其序列文库。用绿色荧光蛋白作为报告蛋白来评价所获得的启动子的强度。结果表明,所研究的pRPL25衍生物的最小功能长度为199 bp,最佳功能长度为497 bp。当序列缩短到400bp时,报告基因的表达量明显下降。基于以上,我们提出pRPL25的400 - 500bp区域包含一个上游激活序列(UAS)。pRPL25启动子及其衍生物有可能在生物工程中用于创建具有精确基因表达水平的代谢途径。与传统的表达系统如酿酒酵母相比,在其基础上构建的菌株可能更有效地产生目标化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Biochemistry and Microbiology
Applied Biochemistry and Microbiology 生物-生物工程与应用微生物
CiteScore
1.70
自引率
12.50%
发文量
75
审稿时长
6-12 weeks
期刊介绍: Applied Biochemistry and Microbiology is an international peer reviewed journal that publishes original articles on biochemistry and microbiology that have or may have practical applications. The studies include: enzymes and mechanisms of enzymatic reactions, biosynthesis of low and high molecular physiologically active compounds; the studies of their structure and properties; biogenesis and pathways of their regulation; metabolism of producers of biologically active compounds, biocatalysis in organic synthesis, applied genetics of microorganisms, applied enzymology; protein and metabolic engineering, biochemical bases of phytoimmunity, applied aspects of biochemical and immunochemical analysis; biodegradation of xenobiotics; biosensors; biomedical research (without clinical studies). Along with experimental works, the journal publishes descriptions of novel research techniques and reviews on selected topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信