I. Meydan, H. Seckin, Y. Kocak, E. Okumus, M. Bekmezci, F. Sen
{"title":"Evaluation of antioxidant, antibacterial and thermal stability properties of silver nanoparticles synthesised with Infundibulicybe gibba extract","authors":"I. Meydan, H. Seckin, Y. Kocak, E. Okumus, M. Bekmezci, F. Sen","doi":"10.1007/s13762-024-06131-4","DOIUrl":null,"url":null,"abstract":"<div><p>Mushrooms have been used by people for centuries for various purposes due to their unique taste, high nutritional content and pharmacological effects. Bioactive components in the structure of mushrooms are an important biological source for the green synthesis of silver nanoparticles (AgNPs) as reducing and stabilizing agents. In this study, AgNPs/Ig were synthesized using the mushroom species <i>Infundibulicybe gibba</i>. The color transformation of the formed nanoparticles from yellow to brown occurred and peaked at 370 nm in the UV–Vis spectrum. The nanoparticles had amorphous shape and their molecular characterization was determined by Fourier transform infrared spectroscopy (FTIR). AgNPs/Ig was much more stable (− 50.02 mV) and its hydrodynamic diameter was much lower (216.50 nm) compared to the mushroom extract. A significant increase in the antioxidant activity (IC<sub>50</sub> 5.66 mg/ml) and thermal stability of the formed nanoparticles was determined. Lipid peroxidation inhibition of the extract and nanoparticles was measured as IC<sub>50</sub> value of 6.75 and 5.51 mg/ml, respectively. In the antimicrobial analysis results, while the mushroom extract did not show any inhibition against the selected microorganisms, AgNPs/Ig showed a low antimicrobial activity. As a result, the synthesis of AgNPs/Ig was carried out through green synthesis, which is environmentally friendly, safe, cost-effective, easy to use and does not contain toxic chemicals, and it has been revealed that AgNPs synthesized using this mushroom species have advantageous potential for use.</p></div>","PeriodicalId":589,"journal":{"name":"International Journal of Environmental Science and Technology","volume":"22 8","pages":"6957 - 6966"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Environmental Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s13762-024-06131-4","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Mushrooms have been used by people for centuries for various purposes due to their unique taste, high nutritional content and pharmacological effects. Bioactive components in the structure of mushrooms are an important biological source for the green synthesis of silver nanoparticles (AgNPs) as reducing and stabilizing agents. In this study, AgNPs/Ig were synthesized using the mushroom species Infundibulicybe gibba. The color transformation of the formed nanoparticles from yellow to brown occurred and peaked at 370 nm in the UV–Vis spectrum. The nanoparticles had amorphous shape and their molecular characterization was determined by Fourier transform infrared spectroscopy (FTIR). AgNPs/Ig was much more stable (− 50.02 mV) and its hydrodynamic diameter was much lower (216.50 nm) compared to the mushroom extract. A significant increase in the antioxidant activity (IC50 5.66 mg/ml) and thermal stability of the formed nanoparticles was determined. Lipid peroxidation inhibition of the extract and nanoparticles was measured as IC50 value of 6.75 and 5.51 mg/ml, respectively. In the antimicrobial analysis results, while the mushroom extract did not show any inhibition against the selected microorganisms, AgNPs/Ig showed a low antimicrobial activity. As a result, the synthesis of AgNPs/Ig was carried out through green synthesis, which is environmentally friendly, safe, cost-effective, easy to use and does not contain toxic chemicals, and it has been revealed that AgNPs synthesized using this mushroom species have advantageous potential for use.
期刊介绍:
International Journal of Environmental Science and Technology (IJEST) is an international scholarly refereed research journal which aims to promote the theory and practice of environmental science and technology, innovation, engineering and management.
A broad outline of the journal''s scope includes: peer reviewed original research articles, case and technical reports, reviews and analyses papers, short communications and notes to the editor, in interdisciplinary information on the practice and status of research in environmental science and technology, both natural and man made.
The main aspects of research areas include, but are not exclusive to; environmental chemistry and biology, environments pollution control and abatement technology, transport and fate of pollutants in the environment, concentrations and dispersion of wastes in air, water, and soil, point and non-point sources pollution, heavy metals and organic compounds in the environment, atmospheric pollutants and trace gases, solid and hazardous waste management; soil biodegradation and bioremediation of contaminated sites; environmental impact assessment, industrial ecology, ecological and human risk assessment; improved energy management and auditing efficiency and environmental standards and criteria.