{"title":"The two-loop fully differential soft function for \\(Q\\overline{Q }V\\) production at lepton colliders","authors":"Ze Long Liu, Pier Francesco Monni","doi":"10.1007/JHEP03(2025)096","DOIUrl":null,"url":null,"abstract":"<p>We consider the production of a pair of heavy quarks <span>\\(Q\\overline{Q }\\)</span> in association with a generic colour singlet system <i>V</i> at lepton colliders, and present the first analytic calculation of the two-loop soft function differential in the total momentum of the real radiation. The calculation is performed by reducing the relevant Feynman integrals into a canonical basis of master integrals by means of integration-by-parts identities. The resulting integrals are then evaluated by solving a system of differential equations in the kinematic invariants, whose boundary conditions are determined analytically with some care due to the presence of Coulomb singularities. The fully differential soft function is expressed in terms of Goncharov polylogarithms. This result is an essential ingredient for a range of N<sup>3</sup>LL resummations for key collider observables at lepton colliders, such as the <span>\\(Q\\overline{Q }V\\)</span> production cross section at threshold and observables sensitive to the total transverse momentum of the radiation in heavy-quark final states. Moreover, it constitutes the complete final-final dipole contribution to the fully differential soft function needed for the description of <span>\\(Q\\overline{Q }V\\)</span> production at hadron colliders, which plays an important role in the LHC physics programme.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 3","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP03(2025)096.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP03(2025)096","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the production of a pair of heavy quarks \(Q\overline{Q }\) in association with a generic colour singlet system V at lepton colliders, and present the first analytic calculation of the two-loop soft function differential in the total momentum of the real radiation. The calculation is performed by reducing the relevant Feynman integrals into a canonical basis of master integrals by means of integration-by-parts identities. The resulting integrals are then evaluated by solving a system of differential equations in the kinematic invariants, whose boundary conditions are determined analytically with some care due to the presence of Coulomb singularities. The fully differential soft function is expressed in terms of Goncharov polylogarithms. This result is an essential ingredient for a range of N3LL resummations for key collider observables at lepton colliders, such as the \(Q\overline{Q }V\) production cross section at threshold and observables sensitive to the total transverse momentum of the radiation in heavy-quark final states. Moreover, it constitutes the complete final-final dipole contribution to the fully differential soft function needed for the description of \(Q\overline{Q }V\) production at hadron colliders, which plays an important role in the LHC physics programme.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).