{"title":"A proof that no-signalling implies microcausality in quantum field theory","authors":"Antoine Soulas","doi":"10.1007/s10701-025-00832-7","DOIUrl":null,"url":null,"abstract":"<div><p>We study some logical interrelationships between fundamental properties in (relativistic) quantum theories. An operational no-signalling condition is first introduced in the context of quantum mechanics, where we prove its equivalence to an apparently weaker version restricted to ideal measurements, and to a property of factorization of the evolution unitary operator. We then translate this condition in quantum field theory and prove that it implies both microcausality and the spin-statistics theorem, in the ideal case of pointwise measurements implemented in the projection postulate sense. This provides an argument (often invoked but apparently missing in the literature) to see microcausality as a necessary condition for the compatibility of spacelike separated operations.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"55 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10701-025-00832-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We study some logical interrelationships between fundamental properties in (relativistic) quantum theories. An operational no-signalling condition is first introduced in the context of quantum mechanics, where we prove its equivalence to an apparently weaker version restricted to ideal measurements, and to a property of factorization of the evolution unitary operator. We then translate this condition in quantum field theory and prove that it implies both microcausality and the spin-statistics theorem, in the ideal case of pointwise measurements implemented in the projection postulate sense. This provides an argument (often invoked but apparently missing in the literature) to see microcausality as a necessary condition for the compatibility of spacelike separated operations.
期刊介绍:
The conceptual foundations of physics have been under constant revision from the outset, and remain so today. Discussion of foundational issues has always been a major source of progress in science, on a par with empirical knowledge and mathematics. Examples include the debates on the nature of space and time involving Newton and later Einstein; on the nature of heat and of energy; on irreversibility and probability due to Boltzmann; on the nature of matter and observation measurement during the early days of quantum theory; on the meaning of renormalisation, and many others.
Today, insightful reflection on the conceptual structure utilised in our efforts to understand the physical world is of particular value, given the serious unsolved problems that are likely to demand, once again, modifications of the grammar of our scientific description of the physical world. The quantum properties of gravity, the nature of measurement in quantum mechanics, the primary source of irreversibility, the role of information in physics – all these are examples of questions about which science is still confused and whose solution may well demand more than skilled mathematics and new experiments.
Foundations of Physics is a privileged forum for discussing such foundational issues, open to physicists, cosmologists, philosophers and mathematicians. It is devoted to the conceptual bases of the fundamental theories of physics and cosmology, to their logical, methodological, and philosophical premises.
The journal welcomes papers on issues such as the foundations of special and general relativity, quantum theory, classical and quantum field theory, quantum gravity, unified theories, thermodynamics, statistical mechanics, cosmology, and similar.