Application of the Acoustic Emission Technique for Studying Kinetics of Corrosion Processes in the ZK60 Magnesium Alloy

IF 0.6 4区 材料科学 Q4 METALLURGY & METALLURGICAL ENGINEERING
E. D. Merson, V. A. Poluyanov, P. N. Myagkikh, D. L. Merson
{"title":"Application of the Acoustic Emission Technique for Studying Kinetics of Corrosion Processes in the ZK60 Magnesium Alloy","authors":"E. D. Merson,&nbsp;V. A. Poluyanov,&nbsp;P. N. Myagkikh,&nbsp;D. L. Merson","doi":"10.1134/S1067821224600923","DOIUrl":null,"url":null,"abstract":"<p>Low corrosion resistance of magnesium alloys is a challenging problem that hinders their wide implementation in industry and medicine. In this regard, the study of the mechanisms and patterns of corrosion processes in magnesium and its alloys, including the analysis of the kinetics of these processes, is an urgent task. However, the set of methods available for studying the kinetics of corrosion with sufficient time resolution is very limited. Several studies have been published that demonstrated the high sensitivity of the acoustic emission (AE) method to corrosion processes occurring on the surface of magnesium alloys. Although these studies suggested that AE is associated with the release of hydrogen bubbles accompanying corrosion, no direct relationship has yet been established between the amount of hydrogen released and the AE characteristics. The present study aims at filling this gap. To conduct the study, a special setup with a corrosion cell was developed that allows monitoring changes in the volume of hydrogen released from the corroding surface of the sample, concurrently with recording AE signals and changes in the open-circuit potential (OCP) accompanying the corrosion process. Using this technique, the corrosion of ZK60 alloy in a 0.9% NaCl solution was examined. It was found that intense AE accompanied the corrosion process of this alloy from the beginning to the end of the test. A correlation was found between the AE characteristics, the volume of released hydrogen, and the OCP values at various intervals of the test. In particular, a linear relationship was discovered between the number of AE signals and the volume of hydrogen released during the corrosion process. The sensitivity of the method based on AE registration to the released hydrogen volume is shown to be several orders of magnitude higher than that of the conventional method of collecting hydrogen using a burette.</p>","PeriodicalId":765,"journal":{"name":"Russian Journal of Non-Ferrous Metals","volume":"65 3","pages":"142 - 150"},"PeriodicalIF":0.6000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Non-Ferrous Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1067821224600923","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Low corrosion resistance of magnesium alloys is a challenging problem that hinders their wide implementation in industry and medicine. In this regard, the study of the mechanisms and patterns of corrosion processes in magnesium and its alloys, including the analysis of the kinetics of these processes, is an urgent task. However, the set of methods available for studying the kinetics of corrosion with sufficient time resolution is very limited. Several studies have been published that demonstrated the high sensitivity of the acoustic emission (AE) method to corrosion processes occurring on the surface of magnesium alloys. Although these studies suggested that AE is associated with the release of hydrogen bubbles accompanying corrosion, no direct relationship has yet been established between the amount of hydrogen released and the AE characteristics. The present study aims at filling this gap. To conduct the study, a special setup with a corrosion cell was developed that allows monitoring changes in the volume of hydrogen released from the corroding surface of the sample, concurrently with recording AE signals and changes in the open-circuit potential (OCP) accompanying the corrosion process. Using this technique, the corrosion of ZK60 alloy in a 0.9% NaCl solution was examined. It was found that intense AE accompanied the corrosion process of this alloy from the beginning to the end of the test. A correlation was found between the AE characteristics, the volume of released hydrogen, and the OCP values at various intervals of the test. In particular, a linear relationship was discovered between the number of AE signals and the volume of hydrogen released during the corrosion process. The sensitivity of the method based on AE registration to the released hydrogen volume is shown to be several orders of magnitude higher than that of the conventional method of collecting hydrogen using a burette.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Journal of Non-Ferrous Metals
Russian Journal of Non-Ferrous Metals METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
1.90
自引率
12.50%
发文量
59
审稿时长
3 months
期刊介绍: Russian Journal of Non-Ferrous Metals is a journal the main goal of which is to achieve new knowledge in the following topics: extraction metallurgy, hydro- and pirometallurgy, casting, plastic deformation, metallography and heat treatment, powder metallurgy and composites, self-propagating high-temperature synthesis, surface engineering and advanced protected coatings, environments, and energy capacity in non-ferrous metallurgy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信