Label-free quantification of single-stranded DNA utilizing enzymatic digestion and an off-the-shelf glucose test strip†

IF 3.5 Q2 CHEMISTRY, ANALYTICAL
Faisal Hossain and Michael J. Serpe
{"title":"Label-free quantification of single-stranded DNA utilizing enzymatic digestion and an off-the-shelf glucose test strip†","authors":"Faisal Hossain and Michael J. Serpe","doi":"10.1039/D4SD00318G","DOIUrl":null,"url":null,"abstract":"<p >A method was developed for quantifying single-stranded DNA (ssDNA) through enzymatic digestion and using commercially available glucose test strips. The process involves the initial digestion of ssDNA using a combination of exonuclease 1 and alkaline phosphatase enzymes, leading to the liberation of phosphates from the ssDNA backbone as free orthophosphate. Subsequently, the orthophosphates react with maltose and maltose phosphorylase, producing equivalent amounts of glucose to orthophosphate. The resulting glucose, which can be related to the ssDNA concentration, can be measured amperometrically with an off-the-shelf glucose test strip connected to a mini potentiostat. This method offers versatility, allowing the determination of ssDNA, regardless of nucleotide-count or sequence, with increased sensitivity as the number of nucleotides (NT) in the DNA increases. The method exhibits a limit of detection of 780 nM for 22-NT, 527 nM for 53-NT, 422 nM for 75-NT, and 329 nM for 87-NT ssDNA, and a linear range of 0–2 μM. To selectively quantify a specific ssDNA target, a magnetic microparticle-based isolation step was incorporated, demonstrating high selectivity for quantifying a particular ssDNA target from a mixture. The method holds potential for label-free quantification of ssDNA that can have an impact in myriad fields.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 3","pages":" 256-264"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/sd/d4sd00318g?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors & diagnostics","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/sd/d4sd00318g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A method was developed for quantifying single-stranded DNA (ssDNA) through enzymatic digestion and using commercially available glucose test strips. The process involves the initial digestion of ssDNA using a combination of exonuclease 1 and alkaline phosphatase enzymes, leading to the liberation of phosphates from the ssDNA backbone as free orthophosphate. Subsequently, the orthophosphates react with maltose and maltose phosphorylase, producing equivalent amounts of glucose to orthophosphate. The resulting glucose, which can be related to the ssDNA concentration, can be measured amperometrically with an off-the-shelf glucose test strip connected to a mini potentiostat. This method offers versatility, allowing the determination of ssDNA, regardless of nucleotide-count or sequence, with increased sensitivity as the number of nucleotides (NT) in the DNA increases. The method exhibits a limit of detection of 780 nM for 22-NT, 527 nM for 53-NT, 422 nM for 75-NT, and 329 nM for 87-NT ssDNA, and a linear range of 0–2 μM. To selectively quantify a specific ssDNA target, a magnetic microparticle-based isolation step was incorporated, demonstrating high selectivity for quantifying a particular ssDNA target from a mixture. The method holds potential for label-free quantification of ssDNA that can have an impact in myriad fields.

Abstract Image

单链DNA无标记定量利用酶消化和现成的葡萄糖试纸†
建立了一种定量单链DNA (ssDNA)的方法,通过酶切和使用市售的葡萄糖试纸。该过程包括使用核酸外切酶1和碱性磷酸酶的组合对ssDNA进行初始消化,导致磷酸盐从ssDNA主链中作为游离正磷酸盐解放出来。随后,正磷酸盐与麦芽糖和麦芽糖磷酸化酶反应,产生等量的葡萄糖作为正磷酸盐。所得的葡萄糖可以与ssDNA浓度相关,可以用现成的葡萄糖测试条连接到微型恒电位器进行安培测量。该方法具有通用性,无论核苷酸计数或序列如何,都可以测定ssDNA,随着DNA中核苷酸(NT)数量的增加,灵敏度增加。22-NT的检测限为780 nM, 53-NT为527 nM, 75-NT为422 nM, 87-NT为329 nM,线性范围为0 ~ 2 μM。为了选择性地定量特定的ssDNA靶标,采用了基于磁微粒的分离步骤,显示了从混合物中定量特定ssDNA靶标的高选择性。该方法具有潜在的无标签定量的ssDNA,可以在无数的领域产生影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信