Ismaila Diédhiou, Amal Raouafi, Sami Hamzaoui, Modou Fall and Noureddine Raouafi
{"title":"Optimizing the preparation of laser-derived 3D porous graphene electrodes for modification-free sensing of heavy metal ions†","authors":"Ismaila Diédhiou, Amal Raouafi, Sami Hamzaoui, Modou Fall and Noureddine Raouafi","doi":"10.1039/D4SD00290C","DOIUrl":null,"url":null,"abstract":"<p >Heavy metallic cations are prevalent in the environment and have detrimental effects on human health and flora. Research into methods for their detection is increasing. Laser-derived graphene electrodes (LDGEs) have gained popularity in electrochemical applications owing to their straightforward preparation, cost-effectiveness, porous structure, high specific surface area, and advantageous electronic properties. In this study, we showed that the fine-tuning of laser beam parameters, such as power and speed, as well as the electrochemical detection parameters, allowed detecting heavy metal ions, specifically Cd<small><sup>2+</sup></small> and Pb<small><sup>2+</sup></small>, using carefully optimized porous LDGEs, without the need of adding any other metals such as Bi<small><sup>3+</sup></small>. The optimal LDGEs, respectively fabricated with a laser power and speed of 6.4 W and 30 cm s<small><sup>−1</sup></small> were characterized using electrochemical measurements, digital imaging, scanning electron microscopy, and Raman spectroscopy, confirming the 3D porous structure. The LDGEs were then subjected to square-wave anodic stripping voltammetry for the simultaneous detection of Cd<small><sup>2+</sup></small> and Pb<small><sup>2+</sup></small> in a 0.1 M acetate-buffered solution at pH 4. The key metrics for the LDGE-based sensor were as follows: sensitivities of 0.45 (Cd<small><sup>2+</sup></small>) and 0.93 (Pb<small><sup>2+</sup></small>) μA ppb<small><sup>−1</sup></small> cm<small><sup>−2</sup></small>, linear ranges spanning from 25 to 1000 ppb (Cd<small><sup>2+</sup></small>) and 10 to 500 ppb (Pb<small><sup>2+</sup></small>), and detection limits of 6.13 ppb (Cd<small><sup>2+</sup></small>) and 2.96 ppb (Pb<small><sup>2+</sup></small>) (at S/N = 3).The electrochemical sensor could simultaneously detect Cd<small><sup>2+</sup></small> and Pb<small><sup>2+</sup></small> in real samples, including ore and tap water. This underscores the applicability and versatility of the optimized LDGEs for heavy-metal ion detection in complex environmental matrices.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 3","pages":" 202-215"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/sd/d4sd00290c?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors & diagnostics","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/sd/d4sd00290c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Heavy metallic cations are prevalent in the environment and have detrimental effects on human health and flora. Research into methods for their detection is increasing. Laser-derived graphene electrodes (LDGEs) have gained popularity in electrochemical applications owing to their straightforward preparation, cost-effectiveness, porous structure, high specific surface area, and advantageous electronic properties. In this study, we showed that the fine-tuning of laser beam parameters, such as power and speed, as well as the electrochemical detection parameters, allowed detecting heavy metal ions, specifically Cd2+ and Pb2+, using carefully optimized porous LDGEs, without the need of adding any other metals such as Bi3+. The optimal LDGEs, respectively fabricated with a laser power and speed of 6.4 W and 30 cm s−1 were characterized using electrochemical measurements, digital imaging, scanning electron microscopy, and Raman spectroscopy, confirming the 3D porous structure. The LDGEs were then subjected to square-wave anodic stripping voltammetry for the simultaneous detection of Cd2+ and Pb2+ in a 0.1 M acetate-buffered solution at pH 4. The key metrics for the LDGE-based sensor were as follows: sensitivities of 0.45 (Cd2+) and 0.93 (Pb2+) μA ppb−1 cm−2, linear ranges spanning from 25 to 1000 ppb (Cd2+) and 10 to 500 ppb (Pb2+), and detection limits of 6.13 ppb (Cd2+) and 2.96 ppb (Pb2+) (at S/N = 3).The electrochemical sensor could simultaneously detect Cd2+ and Pb2+ in real samples, including ore and tap water. This underscores the applicability and versatility of the optimized LDGEs for heavy-metal ion detection in complex environmental matrices.