Facile characterization of pore accessibility in metal-organic framework/polymer composites

IF 3 4区 工程技术 Q3 CHEMISTRY, PHYSICAL
Trenton M. Tovar, Gregory W. Peterson
{"title":"Facile characterization of pore accessibility in metal-organic framework/polymer composites","authors":"Trenton M. Tovar,&nbsp;Gregory W. Peterson","doi":"10.1007/s10450-025-00618-3","DOIUrl":null,"url":null,"abstract":"<div><p>Metal-organic framework (MOF)/polymer composites provide the possibility of combining the desired reactive and sorptive properties of highly porous MOFs with the desired mechanical properties of polymers to develop novel functional materials. Both MOF and polymer chemistries are complex leading to various degrees of material compatibility. It is desired to develop a facile measurement of the accessibility of MOF pore space within the composite matrix. Traditionally, N<sub>2</sub> isotherms at 77 K have been used to characterize pore space in porous materials. We found that using N<sub>2</sub> isotherms to assess pore accessibility in MOF/polymer composites underestimates the true accessibility at operational conditions. This is mostly due to the cryogenic temperature of the measurement being below the glass transition temperature of polymers. However, composite synthesis and morphology also play a role in the measurement. Measuring CO<sub>2</sub> isotherms at 0 °C was shown to be a facile, more accurate measurement of pore accessibility in MOF/polymer composites.</p></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"31 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10450-025-00618-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Metal-organic framework (MOF)/polymer composites provide the possibility of combining the desired reactive and sorptive properties of highly porous MOFs with the desired mechanical properties of polymers to develop novel functional materials. Both MOF and polymer chemistries are complex leading to various degrees of material compatibility. It is desired to develop a facile measurement of the accessibility of MOF pore space within the composite matrix. Traditionally, N2 isotherms at 77 K have been used to characterize pore space in porous materials. We found that using N2 isotherms to assess pore accessibility in MOF/polymer composites underestimates the true accessibility at operational conditions. This is mostly due to the cryogenic temperature of the measurement being below the glass transition temperature of polymers. However, composite synthesis and morphology also play a role in the measurement. Measuring CO2 isotherms at 0 °C was shown to be a facile, more accurate measurement of pore accessibility in MOF/polymer composites.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Adsorption
Adsorption 工程技术-工程:化工
CiteScore
8.10
自引率
3.00%
发文量
18
审稿时长
2.4 months
期刊介绍: The journal Adsorption provides authoritative information on adsorption and allied fields to scientists, engineers, and technologists throughout the world. The information takes the form of peer-reviewed articles, R&D notes, topical review papers, tutorial papers, book reviews, meeting announcements, and news. Coverage includes fundamental and practical aspects of adsorption: mathematics, thermodynamics, chemistry, and physics, as well as processes, applications, models engineering, and equipment design. Among the topics are Adsorbents: new materials, new synthesis techniques, characterization of structure and properties, and applications; Equilibria: novel theories or semi-empirical models, experimental data, and new measurement methods; Kinetics: new models, experimental data, and measurement methods. Processes: chemical, biochemical, environmental, and other applications, purification or bulk separation, fixed bed or moving bed systems, simulations, experiments, and design procedures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信