The impact of double crosslinking and alkaline activation strategies on the multifaceted characteristics of quaternized poly(vinyl alcohol) anion exchange membranes

IF 3.2 Q2 CHEMISTRY, PHYSICAL
Energy advances Pub Date : 2024-12-30 DOI:10.1039/D4YA00555D
Wei Keat Ng, Chun Yik Wong, Nur Adiera Hanna Rosli, Kiranraj Vaiyanan Kannan, Kee Shyuan Loh, Bee Lin Chua and Wai Yin Wong
{"title":"The impact of double crosslinking and alkaline activation strategies on the multifaceted characteristics of quaternized poly(vinyl alcohol) anion exchange membranes","authors":"Wei Keat Ng, Chun Yik Wong, Nur Adiera Hanna Rosli, Kiranraj Vaiyanan Kannan, Kee Shyuan Loh, Bee Lin Chua and Wai Yin Wong","doi":"10.1039/D4YA00555D","DOIUrl":null,"url":null,"abstract":"<p >This study investigates the effects of crosslinking strategies and KOH activation on the multifaceted characteristics of quaternized poly(vinyl alcohol) (QPVA) membranes for anion exchange membrane (AEM) applications. <em>In situ</em> and combined <em>in situ</em>/<em>ex situ</em> crosslinking with glutaraldehyde were evaluated at 5 M, 6 M, and 8 M KOH concentrations. Multifaceted characteristics on the membranes including ionic conductivity, swelling degree, thermal and oxidative stability are studied. Four types of membranes: M1 (<em>in situ</em> crosslinked, heated), M2 (<em>in situ</em> crosslinked, no heating), M1 2x (<em>in situ</em>, heated and <em>ex situ</em> crosslinked), and M2 2x (<em>in situ</em>, no heating and <em>ex situ</em> crosslinked) were synthesized. The M1 5 M KOH membrane (<em>in situ</em> crosslinked, heated activation) demonstrated the highest ionic conductivity (40.93 mS cm<small><sup>−1</sup></small> before equilibrium, 33.41 mS cm<small><sup>−1</sup></small> after equilibrium) and moderate oxidative stability (81.10%). Combined crosslinking and higher activation temperatures improved the membrane stability and mechanical properties but reduced the oxidative stability owing to potential alkaline attack on glutaraldehyde crosslinked groups. Oxidative stability is critical for AEMs because they are exposed to reactive oxygen species (ROS) generated during fuel cell operation or electrolysis. Poor oxidative stability can lead to degradation of the membrane, reducing its lifespan and overall performance in these applications. The novelty of this work lies in the dual crosslinking strategy, which significantly enhances the mechanical and thermal properties of QPVA membranes, while also highlighting the impact of KOH activation on crystallinity and ion transport. This study emphasizes the importance of optimizing crosslinking and activation conditions to develop high-performance QPVA membranes for energy conversion and storage applications such as fuel cells and electrolyzers.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 3","pages":" 400-413"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d4ya00555d?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ya/d4ya00555d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the effects of crosslinking strategies and KOH activation on the multifaceted characteristics of quaternized poly(vinyl alcohol) (QPVA) membranes for anion exchange membrane (AEM) applications. In situ and combined in situ/ex situ crosslinking with glutaraldehyde were evaluated at 5 M, 6 M, and 8 M KOH concentrations. Multifaceted characteristics on the membranes including ionic conductivity, swelling degree, thermal and oxidative stability are studied. Four types of membranes: M1 (in situ crosslinked, heated), M2 (in situ crosslinked, no heating), M1 2x (in situ, heated and ex situ crosslinked), and M2 2x (in situ, no heating and ex situ crosslinked) were synthesized. The M1 5 M KOH membrane (in situ crosslinked, heated activation) demonstrated the highest ionic conductivity (40.93 mS cm−1 before equilibrium, 33.41 mS cm−1 after equilibrium) and moderate oxidative stability (81.10%). Combined crosslinking and higher activation temperatures improved the membrane stability and mechanical properties but reduced the oxidative stability owing to potential alkaline attack on glutaraldehyde crosslinked groups. Oxidative stability is critical for AEMs because they are exposed to reactive oxygen species (ROS) generated during fuel cell operation or electrolysis. Poor oxidative stability can lead to degradation of the membrane, reducing its lifespan and overall performance in these applications. The novelty of this work lies in the dual crosslinking strategy, which significantly enhances the mechanical and thermal properties of QPVA membranes, while also highlighting the impact of KOH activation on crystallinity and ion transport. This study emphasizes the importance of optimizing crosslinking and activation conditions to develop high-performance QPVA membranes for energy conversion and storage applications such as fuel cells and electrolyzers.

Abstract Image

双交联和碱性活化策略对季铵化聚乙烯醇阴离子交换膜多方面特性的影响
本研究探讨了交联策略和KOH活化对阴离子交换膜(AEM)用季铵盐化聚乙烯醇(QPVA)膜多方面特性的影响。在5 M、6 M和8 M KOH浓度下,对戊二醛原位交联和与戊二醛的原位/非原位联合交联进行了评估。研究了膜的离子电导率、溶胀度、热稳定性和氧化稳定性等多方面特性。合成了四种膜:M1(原位交联,加热)、M2(原位交联,不加热)、M1 2x(原位,加热和非原位交联)和M2 2x(原位,不加热和非原位交联)。M1 5 M KOH膜(原位交联加热活化)表现出最高的离子电导率(平衡前40.93 mS cm−1,平衡后33.41 mS cm−1)和中等氧化稳定性(81.10%)。复合交联和较高的活化温度提高了膜的稳定性和力学性能,但由于戊二醛交联基团可能受到碱性攻击,降低了膜的氧化稳定性。氧化稳定性对AEMs至关重要,因为它们暴露在燃料电池运行或电解过程中产生的活性氧(ROS)中。氧化稳定性差会导致膜的降解,降低其使用寿命和在这些应用中的整体性能。这项工作的新颖之处在于双交联策略,该策略显著提高了QPVA膜的力学和热性能,同时也突出了KOH活化对结晶度和离子传输的影响。本研究强调了优化交联和活化条件对于开发高性能QPVA膜的重要性,该膜可用于燃料电池和电解槽等能量转换和存储应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信