The impact of double crosslinking and alkaline activation strategies on the multifaceted characteristics of quaternized poly(vinyl alcohol) anion exchange membranes

IF 3.2 Q2 CHEMISTRY, PHYSICAL
Energy advances Pub Date : 2024-12-30 DOI:10.1039/D4YA00555D
Wei Keat Ng, Chun Yik Wong, Nur Adiera Hanna Rosli, Kiranraj Vaiyanan Kannan, Kee Shyuan Loh, Bee Lin Chua and Wai Yin Wong
{"title":"The impact of double crosslinking and alkaline activation strategies on the multifaceted characteristics of quaternized poly(vinyl alcohol) anion exchange membranes","authors":"Wei Keat Ng, Chun Yik Wong, Nur Adiera Hanna Rosli, Kiranraj Vaiyanan Kannan, Kee Shyuan Loh, Bee Lin Chua and Wai Yin Wong","doi":"10.1039/D4YA00555D","DOIUrl":null,"url":null,"abstract":"<p >This study investigates the effects of crosslinking strategies and KOH activation on the multifaceted characteristics of quaternized poly(vinyl alcohol) (QPVA) membranes for anion exchange membrane (AEM) applications. <em>In situ</em> and combined <em>in situ</em>/<em>ex situ</em> crosslinking with glutaraldehyde were evaluated at 5 M, 6 M, and 8 M KOH concentrations. Multifaceted characteristics on the membranes including ionic conductivity, swelling degree, thermal and oxidative stability are studied. Four types of membranes: M1 (<em>in situ</em> crosslinked, heated), M2 (<em>in situ</em> crosslinked, no heating), M1 2x (<em>in situ</em>, heated and <em>ex situ</em> crosslinked), and M2 2x (<em>in situ</em>, no heating and <em>ex situ</em> crosslinked) were synthesized. The M1 5 M KOH membrane (<em>in situ</em> crosslinked, heated activation) demonstrated the highest ionic conductivity (40.93 mS cm<small><sup>−1</sup></small> before equilibrium, 33.41 mS cm<small><sup>−1</sup></small> after equilibrium) and moderate oxidative stability (81.10%). Combined crosslinking and higher activation temperatures improved the membrane stability and mechanical properties but reduced the oxidative stability owing to potential alkaline attack on glutaraldehyde crosslinked groups. Oxidative stability is critical for AEMs because they are exposed to reactive oxygen species (ROS) generated during fuel cell operation or electrolysis. Poor oxidative stability can lead to degradation of the membrane, reducing its lifespan and overall performance in these applications. The novelty of this work lies in the dual crosslinking strategy, which significantly enhances the mechanical and thermal properties of QPVA membranes, while also highlighting the impact of KOH activation on crystallinity and ion transport. This study emphasizes the importance of optimizing crosslinking and activation conditions to develop high-performance QPVA membranes for energy conversion and storage applications such as fuel cells and electrolyzers.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 3","pages":" 400-413"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d4ya00555d?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ya/d4ya00555d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the effects of crosslinking strategies and KOH activation on the multifaceted characteristics of quaternized poly(vinyl alcohol) (QPVA) membranes for anion exchange membrane (AEM) applications. In situ and combined in situ/ex situ crosslinking with glutaraldehyde were evaluated at 5 M, 6 M, and 8 M KOH concentrations. Multifaceted characteristics on the membranes including ionic conductivity, swelling degree, thermal and oxidative stability are studied. Four types of membranes: M1 (in situ crosslinked, heated), M2 (in situ crosslinked, no heating), M1 2x (in situ, heated and ex situ crosslinked), and M2 2x (in situ, no heating and ex situ crosslinked) were synthesized. The M1 5 M KOH membrane (in situ crosslinked, heated activation) demonstrated the highest ionic conductivity (40.93 mS cm−1 before equilibrium, 33.41 mS cm−1 after equilibrium) and moderate oxidative stability (81.10%). Combined crosslinking and higher activation temperatures improved the membrane stability and mechanical properties but reduced the oxidative stability owing to potential alkaline attack on glutaraldehyde crosslinked groups. Oxidative stability is critical for AEMs because they are exposed to reactive oxygen species (ROS) generated during fuel cell operation or electrolysis. Poor oxidative stability can lead to degradation of the membrane, reducing its lifespan and overall performance in these applications. The novelty of this work lies in the dual crosslinking strategy, which significantly enhances the mechanical and thermal properties of QPVA membranes, while also highlighting the impact of KOH activation on crystallinity and ion transport. This study emphasizes the importance of optimizing crosslinking and activation conditions to develop high-performance QPVA membranes for energy conversion and storage applications such as fuel cells and electrolyzers.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信