{"title":"Selective Experience Sharing in Reinforcement Learning Enhances Interference Management","authors":"Madan Dahal;Mojtaba Vaezi","doi":"10.1109/LCOMM.2025.3535898","DOIUrl":null,"url":null,"abstract":"We propose a novel multi-agent reinforcement learning (RL) approach for inter-cell interference mitigation, in which agents selectively share their experiences with other agents. Each base station is equipped with an agent, which receives signal-to-interference-plus-noise ratio from its own associated users. This information is used to evaluate and selectively share experiences with neighboring agents. The idea is that even a few pertinent experiences from other agents can lead to effective learning. This approach enables fully decentralized training and execution, minimizes information sharing between agents and significantly reduces communication overhead, which is typically the burden of interference management. The proposed method outperforms state-of-the-art multi-agent RL techniques where training is done in a decentralized manner. Furthermore, with a 75% reduction in experience sharing, the proposed algorithm achieves 98% of the spectral efficiency obtained by algorithms sharing all experiences.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"29 3","pages":"615-619"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10857388/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a novel multi-agent reinforcement learning (RL) approach for inter-cell interference mitigation, in which agents selectively share their experiences with other agents. Each base station is equipped with an agent, which receives signal-to-interference-plus-noise ratio from its own associated users. This information is used to evaluate and selectively share experiences with neighboring agents. The idea is that even a few pertinent experiences from other agents can lead to effective learning. This approach enables fully decentralized training and execution, minimizes information sharing between agents and significantly reduces communication overhead, which is typically the burden of interference management. The proposed method outperforms state-of-the-art multi-agent RL techniques where training is done in a decentralized manner. Furthermore, with a 75% reduction in experience sharing, the proposed algorithm achieves 98% of the spectral efficiency obtained by algorithms sharing all experiences.
期刊介绍:
The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.