M2S2: A Multimodal Sensor System for Remote Animal Motion Capture in the Wild

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Azraa Vally;Gerald Maswoswere;Nicholas Bowden;Stephen Paine;Paul Amayo;Andrew Markham;Amir Patel
{"title":"M2S2: A Multimodal Sensor System for Remote Animal Motion Capture in the Wild","authors":"Azraa Vally;Gerald Maswoswere;Nicholas Bowden;Stephen Paine;Paul Amayo;Andrew Markham;Amir Patel","doi":"10.1109/LSENS.2025.3542233","DOIUrl":null,"url":null,"abstract":"Capturing animal locomotion in the wild is far more challenging than in controlled laboratory settings. Wildlife subjects move unpredictably, and issues, such as scaling, occlusion, lighting changes, and the lack of ground truth data, make motion capture difficult. Unlike human biomechanics, where machine learning thrives with annotated datasets, such resources are scarce for wildlife. Multimodal sensing offers a solution by combining the strengths of various sensors, such as Light Detection and Ranging {LiDAR) and thermal cameras, to compensate for individual sensor limitations. In addition, some sensors, like LiDAR, can provide training data for monocular pose estimation models. We introduce a multimodal sensor system (M2S2) for capturing animal motion in the wild. M2S2 integrates RGB, depth, thermal, event, LiDAR, and acoustic sensors to overcome challenges like synchronization and calibration. We showcase its application with data from cheetahs, offering a new resource for advancing sensor fusion algorithms in wildlife motion capture.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 4","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10887236/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Capturing animal locomotion in the wild is far more challenging than in controlled laboratory settings. Wildlife subjects move unpredictably, and issues, such as scaling, occlusion, lighting changes, and the lack of ground truth data, make motion capture difficult. Unlike human biomechanics, where machine learning thrives with annotated datasets, such resources are scarce for wildlife. Multimodal sensing offers a solution by combining the strengths of various sensors, such as Light Detection and Ranging {LiDAR) and thermal cameras, to compensate for individual sensor limitations. In addition, some sensors, like LiDAR, can provide training data for monocular pose estimation models. We introduce a multimodal sensor system (M2S2) for capturing animal motion in the wild. M2S2 integrates RGB, depth, thermal, event, LiDAR, and acoustic sensors to overcome challenges like synchronization and calibration. We showcase its application with data from cheetahs, offering a new resource for advancing sensor fusion algorithms in wildlife motion capture.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信