Increasing resolution and instability for linear inverse scattering problems

IF 1.7 2区 数学 Q1 MATHEMATICS
Pu-Zhao Kow , Mikko Salo , Sen Zou
{"title":"Increasing resolution and instability for linear inverse scattering problems","authors":"Pu-Zhao Kow ,&nbsp;Mikko Salo ,&nbsp;Sen Zou","doi":"10.1016/j.jfa.2025.110923","DOIUrl":null,"url":null,"abstract":"<div><div>In this work we study the increasing resolution of linear inverse scattering problems at a large fixed frequency. We consider the problem of recovering the density of a Herglotz wave function, and the linearized inverse scattering problem for a potential. It is shown that the number of features that can be stably recovered (stable region) becomes larger as the frequency increases, whereas one has strong instability for the rest of the features (unstable region). To show this rigorously, we prove that the singular values of the forward operator stay roughly constant in the stable region and decay exponentially in the unstable region. The arguments are based on structural properties of the problems and they involve the Courant min-max principle for singular values, quantitative Agmon-Hörmander estimates, and a Schwartz kernel computation based on the coarea formula.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 1","pages":"Article 110923"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625001053","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we study the increasing resolution of linear inverse scattering problems at a large fixed frequency. We consider the problem of recovering the density of a Herglotz wave function, and the linearized inverse scattering problem for a potential. It is shown that the number of features that can be stably recovered (stable region) becomes larger as the frequency increases, whereas one has strong instability for the rest of the features (unstable region). To show this rigorously, we prove that the singular values of the forward operator stay roughly constant in the stable region and decay exponentially in the unstable region. The arguments are based on structural properties of the problems and they involve the Courant min-max principle for singular values, quantitative Agmon-Hörmander estimates, and a Schwartz kernel computation based on the coarea formula.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信