Solution of linear ill-posed operator equations by modified truncated singular value expansion

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
Laura Dykes , Mykhailo Kuian , Thomas Mach , Silvia Noschese , Lothar Reichel
{"title":"Solution of linear ill-posed operator equations by modified truncated singular value expansion","authors":"Laura Dykes ,&nbsp;Mykhailo Kuian ,&nbsp;Thomas Mach ,&nbsp;Silvia Noschese ,&nbsp;Lothar Reichel","doi":"10.1016/j.cam.2025.116621","DOIUrl":null,"url":null,"abstract":"<div><div>In much of the literature on the solution of linear ill-posed operator equations in a Hilbert space, the operator equation first is discretized, then the discretized operator is regularized, and finally, the computed solution of the regularized discrete problem is projected into a Hilbert space. In order for this solution approach to give an accurate approximate solution, the regularization method has to correspond to a meaningful analogue in Hilbert space. Moreover, the regularization method chosen may only be applicable to certain linear ill-posed operator equations. However, these issues typically are not discussed in the literature on solution methods based on discretization. One approach to circumvent this difficulty is to avoid discretization. This paper describes how regularization by a modified truncated singular value decomposition introduced in Noschese and Reichel (2014) for finite-dimensional problems can be extended to operator equations. In finite dimensions, this regularization method yields approximate solutions of higher quality than standard truncated singular value decomposition. Our analysis in a Hilbert space setting is of practical interest, because the solution method presented avoids the introduction of discretization errors during the solution process, since we compute regularized solutions without discretization by using the program package Chebfun. While this paper focuses on a particular regularization method, the analysis presented and Chebfun also can be applied to other regularization techniques.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"467 ","pages":"Article 116621"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725001360","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In much of the literature on the solution of linear ill-posed operator equations in a Hilbert space, the operator equation first is discretized, then the discretized operator is regularized, and finally, the computed solution of the regularized discrete problem is projected into a Hilbert space. In order for this solution approach to give an accurate approximate solution, the regularization method has to correspond to a meaningful analogue in Hilbert space. Moreover, the regularization method chosen may only be applicable to certain linear ill-posed operator equations. However, these issues typically are not discussed in the literature on solution methods based on discretization. One approach to circumvent this difficulty is to avoid discretization. This paper describes how regularization by a modified truncated singular value decomposition introduced in Noschese and Reichel (2014) for finite-dimensional problems can be extended to operator equations. In finite dimensions, this regularization method yields approximate solutions of higher quality than standard truncated singular value decomposition. Our analysis in a Hilbert space setting is of practical interest, because the solution method presented avoids the introduction of discretization errors during the solution process, since we compute regularized solutions without discretization by using the program package Chebfun. While this paper focuses on a particular regularization method, the analysis presented and Chebfun also can be applied to other regularization techniques.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信