Characterizations of amorphic schemes and fusions of pairs

IF 0.9 2区 数学 Q2 MATHEMATICS
Edwin R. van Dam , Jack H. Koolen , Yanzhen Xiong
{"title":"Characterizations of amorphic schemes and fusions of pairs","authors":"Edwin R. van Dam ,&nbsp;Jack H. Koolen ,&nbsp;Yanzhen Xiong","doi":"10.1016/j.jcta.2025.106045","DOIUrl":null,"url":null,"abstract":"<div><div>An association scheme is called amorphic if every possible fusion of relations gives rise to a fusion scheme. We call a pair of relations fusing if fusing that pair gives rise to a fusion scheme. We define the fusing-relations graph on the set of relations, where a pair forms an edge if it fuses. We show that if the fusing-relations graph is connected but not a path, then the association scheme is amorphic. As a side result, we show that if an association scheme has at most one relation that is neither strongly regular of Latin square type nor strongly regular of negative Latin square type, then it is amorphic.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"215 ","pages":"Article 106045"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525000408","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

An association scheme is called amorphic if every possible fusion of relations gives rise to a fusion scheme. We call a pair of relations fusing if fusing that pair gives rise to a fusion scheme. We define the fusing-relations graph on the set of relations, where a pair forms an edge if it fuses. We show that if the fusing-relations graph is connected but not a path, then the association scheme is amorphic. As a side result, we show that if an association scheme has at most one relation that is neither strongly regular of Latin square type nor strongly regular of negative Latin square type, then it is amorphic.
非晶方案的表征和对的融合
如果关系的每一种可能的融合都会产生一种融合方案,那么这种结合方案就被称为非晶的。我们称一对关系为融合,如果这对关系融合会产生一个融合方案。我们在关系集上定义了融合关系图,其中一对融合形成一条边。我们证明了如果融合关系图是连通的但不是一条路径,那么关联方案是无定的。作为一个副结果,我们证明了如果一个关联方案最多有一个既不是拉丁方型强正则又不是负拉丁方型强正则的关系,那么它是非拟的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信