Parametric operational analysis of hybrid thermo-electric/fluid-active thermal storage for domestic water heating system

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Joko Waluyo , Robertus Dhimas Dhewangga Putra , Dwi Chandra Adhitya , Reza Abdu Rahman
{"title":"Parametric operational analysis of hybrid thermo-electric/fluid-active thermal storage for domestic water heating system","authors":"Joko Waluyo ,&nbsp;Robertus Dhimas Dhewangga Putra ,&nbsp;Dwi Chandra Adhitya ,&nbsp;Reza Abdu Rahman","doi":"10.1016/j.solmat.2025.113575","DOIUrl":null,"url":null,"abstract":"<div><div>Heat storage is the heart of solar-based water heaters, making the development of this technology extremely important to improve the operational aspect of domestic water heaters. The present work proposes a new system configuration by utilizing hybrid thermo-electric to charge the heat storage material. The assessment is conducted in detail by comparing the typical arrangement of the system, which uses fluid-active operation. Moreover, high melting temperatures and the vast availability of storage material are employed to offer reliable results from this work for actual application. Key finding on the storage operation assessment shows the hybrid thermo-electric offers high charging efficiency, which ranges between 60.3 and 74.3 %, while fluid-active operation has maximum value of 33.9 %. The energy transfer rate becomes higher as the material is directly in contact with the heat source for hybrid thermo-electric operation, resulting in an excellent charge rating, particularly for high thermal capacity storage material. The finding shows that the technical limitation of using high melting temperature and thermal capacity material is solved by introducing a hybrid thermo-electric configuration. Also, the proposed model achieves a high system efficiency around 31–57 %. The manuscript also provides a technical comparison between the two systems, showing that hybrid thermo-electric is more favorable in terms of storage density and control process. Moreover, it reduces the number of components in the system and prevents complex installation. Overall, hybrid thermo-electric operation might be considered as cost-effective approach to maximizing the operation of domestic water heaters.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"286 ","pages":"Article 113575"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092702482500176X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Heat storage is the heart of solar-based water heaters, making the development of this technology extremely important to improve the operational aspect of domestic water heaters. The present work proposes a new system configuration by utilizing hybrid thermo-electric to charge the heat storage material. The assessment is conducted in detail by comparing the typical arrangement of the system, which uses fluid-active operation. Moreover, high melting temperatures and the vast availability of storage material are employed to offer reliable results from this work for actual application. Key finding on the storage operation assessment shows the hybrid thermo-electric offers high charging efficiency, which ranges between 60.3 and 74.3 %, while fluid-active operation has maximum value of 33.9 %. The energy transfer rate becomes higher as the material is directly in contact with the heat source for hybrid thermo-electric operation, resulting in an excellent charge rating, particularly for high thermal capacity storage material. The finding shows that the technical limitation of using high melting temperature and thermal capacity material is solved by introducing a hybrid thermo-electric configuration. Also, the proposed model achieves a high system efficiency around 31–57 %. The manuscript also provides a technical comparison between the two systems, showing that hybrid thermo-electric is more favorable in terms of storage density and control process. Moreover, it reduces the number of components in the system and prevents complex installation. Overall, hybrid thermo-electric operation might be considered as cost-effective approach to maximizing the operation of domestic water heaters.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信