J.G. Guerrero-Felix , S.F.H. Correia , M. Alexandre , C.D. Gonzalez-Gomez , V. Sencadas , L. Fu , E. Ruiz-Reina , P.S. André , C.L. Moraila-Martinez , M.J. Mendes , R.A.S. Ferreira , M.A. Fernandez-Rodriguez
{"title":"Enhancing the efficiency of luminescent solar concentrators via soft colloidal lithography negative templating","authors":"J.G. Guerrero-Felix , S.F.H. Correia , M. Alexandre , C.D. Gonzalez-Gomez , V. Sencadas , L. Fu , E. Ruiz-Reina , P.S. André , C.L. Moraila-Martinez , M.J. Mendes , R.A.S. Ferreira , M.A. Fernandez-Rodriguez","doi":"10.1016/j.matdes.2025.113817","DOIUrl":null,"url":null,"abstract":"<div><div>Building-integrated photovoltaics (BIPV) offers a sustainable pathway by seamlessly incorporating PV cells into architectural elements like façades and windows. In this study, we investigate the potential of luminescent down-shifting solar concentrators in combination with a nanophotonic light-trapping scheme to improve the optical-guiding capabilities and thereby enhance the energy conversion efficiency. We propose a novel cost-effective method to fabricate the photonic structures via soft colloidal lithography negative templating of thin films of TiO<sub>2</sub> nanoparticles, successfully scaling the production to 11x11 cm<sup>2</sup> glass windows. Through simulations and optical-electrical characterization, we demonstrate substantial improvements in energy harvesting for different angles of solar irradiation. We found increases in power output ranging from 57% for angles of incidence below 45° to above 100% for 60° thanks to the nanostructured TiO<sub>2</sub> nanoparticles coatings added to a bottom down-shifting layer. This shows that such integrated approach can enhance both the efficiency and aesthetic appeal of solar solutions in urban environments, advancing the design of energy-efficient, sustainable buildings. Our methodology ensures consistent solar energy capture all year-round, for the relevant range of sunlight incidence angles, while preserving the transparency and multifunctionality of building elements.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"252 ","pages":"Article 113817"},"PeriodicalIF":7.6000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127525002370","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Building-integrated photovoltaics (BIPV) offers a sustainable pathway by seamlessly incorporating PV cells into architectural elements like façades and windows. In this study, we investigate the potential of luminescent down-shifting solar concentrators in combination with a nanophotonic light-trapping scheme to improve the optical-guiding capabilities and thereby enhance the energy conversion efficiency. We propose a novel cost-effective method to fabricate the photonic structures via soft colloidal lithography negative templating of thin films of TiO2 nanoparticles, successfully scaling the production to 11x11 cm2 glass windows. Through simulations and optical-electrical characterization, we demonstrate substantial improvements in energy harvesting for different angles of solar irradiation. We found increases in power output ranging from 57% for angles of incidence below 45° to above 100% for 60° thanks to the nanostructured TiO2 nanoparticles coatings added to a bottom down-shifting layer. This shows that such integrated approach can enhance both the efficiency and aesthetic appeal of solar solutions in urban environments, advancing the design of energy-efficient, sustainable buildings. Our methodology ensures consistent solar energy capture all year-round, for the relevant range of sunlight incidence angles, while preserving the transparency and multifunctionality of building elements.
期刊介绍:
Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry.
The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.