Optimizing drying of municipal dewatered sludge using heat-assisted microorganisms and pig manure addition: A process and economic analysis

Chencheng Wang , Zhigang He , Muhammad Usman , Mohamed Gamal El-Din , Zhigang Liu , Zhijun Luo , He Li , Dandan Xiao , Qunchao Qian , Zhiren Wu
{"title":"Optimizing drying of municipal dewatered sludge using heat-assisted microorganisms and pig manure addition: A process and economic analysis","authors":"Chencheng Wang ,&nbsp;Zhigang He ,&nbsp;Muhammad Usman ,&nbsp;Mohamed Gamal El-Din ,&nbsp;Zhigang Liu ,&nbsp;Zhijun Luo ,&nbsp;He Li ,&nbsp;Dandan Xiao ,&nbsp;Qunchao Qian ,&nbsp;Zhiren Wu","doi":"10.1016/j.wmb.2025.100193","DOIUrl":null,"url":null,"abstract":"<div><div>Sludge drying is an important pretreatment step for municipal dewatered sludge (MDS) treatment and disposal, but the time-consuming and high cost of existing processes have hindered the development of MDS treatment and disposal. In this study, a novel sludge drying technology was proposed on the basis of the characteristics and treatment needs of MDS in China. Pig manure (PM) addition and multisource heat assistance together assisted hyperthermophilic bacteria in achieving rapid drying of MDS. Mechanical factors were optimized via orthogonal experiments, and the optimum PM addition ratio was determined. The relationship between energy input (generation) and output in the system was explored to reveal the reasons why the novel drying technology exhibited superiority. Compared with the traditional biological drying technique and the thermal drying technique, the novel technique has the advantages of high efficiency, time savings and low cost. After 24 h of drying, the moisture content, organic matter content and net calorific value on an air-dried basis (<em>Q</em><sub>net, V,Mad</sub>) of the dried products were 31.43 ± 0.91 %, 72.47 ± 1.89 % and 16.94 ± 0.35 MJ/kg, respectively, which met the requirements of heat recovery and utilization for subsequent thermal treatment. The energy input (generation) to the system exceeded the energy output, indicating that the drying process was positively spontaneous. Multisource heat assistance accounted for 81.6 % of the total generated (input) energy, and 86.43 % of the energy was used for moisture evaporation, indicating high energy utilization of the drying system. In addition, cost savings of US $11.46–16.84/ton (¥83-122.10/ton) were achieved when MDS was treated via the novel drying technology. Overall, the novel drying technology proposed in this study provides feasible, efficient and cost-saving pretreatment technology and ideas for MDS treatment and disposal engineering.</div></div>","PeriodicalId":101276,"journal":{"name":"Waste Management Bulletin","volume":"3 4","pages":"Article 100193"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Management Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949750725000227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sludge drying is an important pretreatment step for municipal dewatered sludge (MDS) treatment and disposal, but the time-consuming and high cost of existing processes have hindered the development of MDS treatment and disposal. In this study, a novel sludge drying technology was proposed on the basis of the characteristics and treatment needs of MDS in China. Pig manure (PM) addition and multisource heat assistance together assisted hyperthermophilic bacteria in achieving rapid drying of MDS. Mechanical factors were optimized via orthogonal experiments, and the optimum PM addition ratio was determined. The relationship between energy input (generation) and output in the system was explored to reveal the reasons why the novel drying technology exhibited superiority. Compared with the traditional biological drying technique and the thermal drying technique, the novel technique has the advantages of high efficiency, time savings and low cost. After 24 h of drying, the moisture content, organic matter content and net calorific value on an air-dried basis (Qnet, V,Mad) of the dried products were 31.43 ± 0.91 %, 72.47 ± 1.89 % and 16.94 ± 0.35 MJ/kg, respectively, which met the requirements of heat recovery and utilization for subsequent thermal treatment. The energy input (generation) to the system exceeded the energy output, indicating that the drying process was positively spontaneous. Multisource heat assistance accounted for 81.6 % of the total generated (input) energy, and 86.43 % of the energy was used for moisture evaporation, indicating high energy utilization of the drying system. In addition, cost savings of US $11.46–16.84/ton (¥83-122.10/ton) were achieved when MDS was treated via the novel drying technology. Overall, the novel drying technology proposed in this study provides feasible, efficient and cost-saving pretreatment technology and ideas for MDS treatment and disposal engineering.

Abstract Image

利用热辅助微生物和猪粪优化城市脱水污泥的干燥:工艺和经济分析
污泥干燥是城市脱水污泥处理处置的重要预处理步骤,但现有工艺耗时、成本高,阻碍了城市脱水污泥处理处置的发展。本研究根据国内MDS的特点和处理需求,提出了一种新的污泥干燥技术。猪粪(PM)添加和多源热辅助共同帮助超嗜热细菌实现MDS的快速干燥。通过正交试验对各力学因素进行优化,确定最佳PM添加比。探讨了系统能量输入(产生)与输出之间的关系,揭示了新型干燥技术具有优越性的原因。与传统的生物干燥技术和热干燥技术相比,该技术具有效率高、节省时间和成本低等优点。干燥24 h后,干燥产物的含水率、有机质含量和风干净热值(Qnet、V、Mad)分别为31.43±0.91%、72.47±1.89%和16.94±0.35 MJ/kg,满足后续热处理的热回收利用要求。系统输入(产生)的能量超过了输出的能量,表明干燥过程是积极自发的。多源热辅助占总产生(输入)能的81.6%,其中86.43%的能量用于水分蒸发,表明该干燥系统具有较高的能量利用率。此外,通过新型干燥技术处理MDS时,每吨可节省11.46-16.84美元(83-122.10日元)的成本。综上所述,本研究提出的新型干燥技术为MDS处理处置工程提供了可行、高效、节约成本的预处理技术和思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信