{"title":"3D printing technology for valorization of food processing wastes and byproducts: A systematic review","authors":"Debapam Saha , Mrutyunjay Padhiary , Azmirul Hoque , Gajendra Prasad","doi":"10.1016/j.wmb.2025.100192","DOIUrl":null,"url":null,"abstract":"<div><div>It is estimated that over 1.3 billion tons of waste are generated annually from food processing, which poses significant environmental and economic challenges. This review delineates the potential of 3D printing technology in valorizing food waste and explores an achievable reduction of 40–60 % in waste disposal through product innovation. This method allows nutrient-rich waste materials like fruit peels, vegetable waste, shellfish shells, and cereal byproducts to be converted into edible and biodegradable packaging aligned with circular economy principles and sustainable food systems. Advances in 3D printing parameters, including optimized extrusion temperature and nozzle diameter, have been shown to improve efficiency by up to 30 % and the quality and integrity of the final product. Such applications are fiber-enriched snack foods and protein-enriched products with 20–35 % nutrient increases, along with biodegradable packaging that breaks down 50 % faster than conventional plastic. Case studies reveal that implementing such solutions by food manufacturers can generate as much as 25 % savings in waste management costs. These advancements are, however, challenged, especially concerning material variability, printability, and regulatory compliance. Existing studies have primarily focused on material formulation and extrusion properties, but gaps persist in large-scale implementation, standardization, and economic feasibility. Future research should emphasize AI-driven optimization to enhance printability by 15–20 %, explore novel biopolymer blends for improved mechanical properties, and integrate blockchain for enhanced traceability and transparency in waste valorization. A comprehensive understanding of the history of the development of the field and the issues it has not solved is important in accelerating the implementation of 3D printing in sustainable food waste management. This study concludes that 3D printing is a transformative approach to reducing food waste and advancing sustainability in the food and packaging sectors.</div></div>","PeriodicalId":101276,"journal":{"name":"Waste Management Bulletin","volume":"3 4","pages":"Article 100192"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Management Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949750725000215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
It is estimated that over 1.3 billion tons of waste are generated annually from food processing, which poses significant environmental and economic challenges. This review delineates the potential of 3D printing technology in valorizing food waste and explores an achievable reduction of 40–60 % in waste disposal through product innovation. This method allows nutrient-rich waste materials like fruit peels, vegetable waste, shellfish shells, and cereal byproducts to be converted into edible and biodegradable packaging aligned with circular economy principles and sustainable food systems. Advances in 3D printing parameters, including optimized extrusion temperature and nozzle diameter, have been shown to improve efficiency by up to 30 % and the quality and integrity of the final product. Such applications are fiber-enriched snack foods and protein-enriched products with 20–35 % nutrient increases, along with biodegradable packaging that breaks down 50 % faster than conventional plastic. Case studies reveal that implementing such solutions by food manufacturers can generate as much as 25 % savings in waste management costs. These advancements are, however, challenged, especially concerning material variability, printability, and regulatory compliance. Existing studies have primarily focused on material formulation and extrusion properties, but gaps persist in large-scale implementation, standardization, and economic feasibility. Future research should emphasize AI-driven optimization to enhance printability by 15–20 %, explore novel biopolymer blends for improved mechanical properties, and integrate blockchain for enhanced traceability and transparency in waste valorization. A comprehensive understanding of the history of the development of the field and the issues it has not solved is important in accelerating the implementation of 3D printing in sustainable food waste management. This study concludes that 3D printing is a transformative approach to reducing food waste and advancing sustainability in the food and packaging sectors.