K. Mounika Nagabushanam , Tarkeshwar Mahto , Somesh Vinayak Tewari , Ramanjaneya Reddy Udumula , Majed A. Alotaibi , Hasmat Malik , Taha Selim Ustun
{"title":"Development of bi-directional switched-capacitor DC-DC converter for EV powertrain application","authors":"K. Mounika Nagabushanam , Tarkeshwar Mahto , Somesh Vinayak Tewari , Ramanjaneya Reddy Udumula , Majed A. Alotaibi , Hasmat Malik , Taha Selim Ustun","doi":"10.1016/j.jestch.2025.102016","DOIUrl":null,"url":null,"abstract":"<div><div>The research presents a novel Bidirectional Switched Capacitor DC-DC (BSCD) Converter and demonstrates its application in integrating a battery with an electric vehicle’s (EV) traction motor. During discharging, the motor is powered by the battery through the converter, and during charging, the traction motor functions as a generator, returning the recovered energy to the battery via the converter. The recommended converter employs a two-duty cycle operation to enhance voltage gain while minimizing circuit components. It utilizes a switched capacitor (SC) cell, enhancing the voltage transfer ratio by operating capacitors CS1 and CS2 in parallel or series. The work includes analysis of the converter’s steady state, mathematical approach, state-space modelling, stability, and efficiency. The proposed converter achieves an efficiency of 90.66 % in charging mode and 96.6 % in discharging mode, with a Gain Margin of 54.4 dB and Phase Margin of 8.09°, indicating stability. Comparative evaluations with existing BDCs are also provided. The implementation of a closed-loop simulation using MATLAB/Simulink and dSpace software validates the performance of the suggested converter-based drive. Furthermore, an experimental investigation of a 200 W, 30 V/430 V configuration confirms the converter’s practical viability.</div></div>","PeriodicalId":48609,"journal":{"name":"Engineering Science and Technology-An International Journal-Jestech","volume":"65 ","pages":"Article 102016"},"PeriodicalIF":5.1000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Science and Technology-An International Journal-Jestech","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215098625000710","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The research presents a novel Bidirectional Switched Capacitor DC-DC (BSCD) Converter and demonstrates its application in integrating a battery with an electric vehicle’s (EV) traction motor. During discharging, the motor is powered by the battery through the converter, and during charging, the traction motor functions as a generator, returning the recovered energy to the battery via the converter. The recommended converter employs a two-duty cycle operation to enhance voltage gain while minimizing circuit components. It utilizes a switched capacitor (SC) cell, enhancing the voltage transfer ratio by operating capacitors CS1 and CS2 in parallel or series. The work includes analysis of the converter’s steady state, mathematical approach, state-space modelling, stability, and efficiency. The proposed converter achieves an efficiency of 90.66 % in charging mode and 96.6 % in discharging mode, with a Gain Margin of 54.4 dB and Phase Margin of 8.09°, indicating stability. Comparative evaluations with existing BDCs are also provided. The implementation of a closed-loop simulation using MATLAB/Simulink and dSpace software validates the performance of the suggested converter-based drive. Furthermore, an experimental investigation of a 200 W, 30 V/430 V configuration confirms the converter’s practical viability.
期刊介绍:
Engineering Science and Technology, an International Journal (JESTECH) (formerly Technology), a peer-reviewed quarterly engineering journal, publishes both theoretical and experimental high quality papers of permanent interest, not previously published in journals, in the field of engineering and applied science which aims to promote the theory and practice of technology and engineering. In addition to peer-reviewed original research papers, the Editorial Board welcomes original research reports, state-of-the-art reviews and communications in the broadly defined field of engineering science and technology.
The scope of JESTECH includes a wide spectrum of subjects including:
-Electrical/Electronics and Computer Engineering (Biomedical Engineering and Instrumentation; Coding, Cryptography, and Information Protection; Communications, Networks, Mobile Computing and Distributed Systems; Compilers and Operating Systems; Computer Architecture, Parallel Processing, and Dependability; Computer Vision and Robotics; Control Theory; Electromagnetic Waves, Microwave Techniques and Antennas; Embedded Systems; Integrated Circuits, VLSI Design, Testing, and CAD; Microelectromechanical Systems; Microelectronics, and Electronic Devices and Circuits; Power, Energy and Energy Conversion Systems; Signal, Image, and Speech Processing)
-Mechanical and Civil Engineering (Automotive Technologies; Biomechanics; Construction Materials; Design and Manufacturing; Dynamics and Control; Energy Generation, Utilization, Conversion, and Storage; Fluid Mechanics and Hydraulics; Heat and Mass Transfer; Micro-Nano Sciences; Renewable and Sustainable Energy Technologies; Robotics and Mechatronics; Solid Mechanics and Structure; Thermal Sciences)
-Metallurgical and Materials Engineering (Advanced Materials Science; Biomaterials; Ceramic and Inorgnanic Materials; Electronic-Magnetic Materials; Energy and Environment; Materials Characterizastion; Metallurgy; Polymers and Nanocomposites)