Bending damage of novel UV-CGFR composites for pipeline rehabilitation: Experimental characterization and numerical simulation

IF 6.3 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Yangyang Xia , Chao Zhang , Cuixia Wang , Jing Wang , Xinxin Sang , Peng Zhao , Hongyuan Fang
{"title":"Bending damage of novel UV-CGFR composites for pipeline rehabilitation: Experimental characterization and numerical simulation","authors":"Yangyang Xia ,&nbsp;Chao Zhang ,&nbsp;Cuixia Wang ,&nbsp;Jing Wang ,&nbsp;Xinxin Sang ,&nbsp;Peng Zhao ,&nbsp;Hongyuan Fang","doi":"10.1016/j.compstruct.2025.119065","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a finite element numerical model of the bending damage of ultraviolet-cured glass fiber reinforced (UV-CGFR) composites was developed based on the results of the three-point bending test and X-ray tomography (Micro-CT), as well as infrared thermography (IRT) and other microscopic and macroscopic characterization tests. The numerical model, incorporating the three-dimensional Hashin failure criterion via the VUMAT subroutine, was established to predict the bending failure process and damage energy of UV-CGFR composites from the perspectives of fracture damage and energy dissipation. The effects of curing time, UV irradiation intensity, and loading rate on the bending properties and bending failure mechanism of UV-CGFR composites were systematically investigated. The primary failure modes observed were resin compression-tensile fractures, fiber tensile fractures, interlaminar debonding, and delamination. The bending strength and bending modulus of UV-CGFR composites increase and decrease with the increase of curing time and irradiation intensity; the bending strength increases with the loading rate, and the bending modulus is less affected by the loading rate. The temperature rise effect generated by fiber tensile fractures and interlaminar debonding was identified as a key factor contributing to the enhancement of bending strength. The temperature increase became more pronounced with higher loading rates, reaching a maximum rise of 5.2℃. Furthermore, the feasibility of UV-CGFR composites for pipeline repair was validated through pipe ring bending tests. The results show that the bending damage behaviour of UV-CGFR composites aligns well with real-world engineering applications, and the UV-CGFR composite lining repair significantly enhanced the pipeline’s load-bearing properties.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"360 ","pages":"Article 119065"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822325002302","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a finite element numerical model of the bending damage of ultraviolet-cured glass fiber reinforced (UV-CGFR) composites was developed based on the results of the three-point bending test and X-ray tomography (Micro-CT), as well as infrared thermography (IRT) and other microscopic and macroscopic characterization tests. The numerical model, incorporating the three-dimensional Hashin failure criterion via the VUMAT subroutine, was established to predict the bending failure process and damage energy of UV-CGFR composites from the perspectives of fracture damage and energy dissipation. The effects of curing time, UV irradiation intensity, and loading rate on the bending properties and bending failure mechanism of UV-CGFR composites were systematically investigated. The primary failure modes observed were resin compression-tensile fractures, fiber tensile fractures, interlaminar debonding, and delamination. The bending strength and bending modulus of UV-CGFR composites increase and decrease with the increase of curing time and irradiation intensity; the bending strength increases with the loading rate, and the bending modulus is less affected by the loading rate. The temperature rise effect generated by fiber tensile fractures and interlaminar debonding was identified as a key factor contributing to the enhancement of bending strength. The temperature increase became more pronounced with higher loading rates, reaching a maximum rise of 5.2℃. Furthermore, the feasibility of UV-CGFR composites for pipeline repair was validated through pipe ring bending tests. The results show that the bending damage behaviour of UV-CGFR composites aligns well with real-world engineering applications, and the UV-CGFR composite lining repair significantly enhanced the pipeline’s load-bearing properties.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Composite Structures
Composite Structures 工程技术-材料科学:复合
CiteScore
12.00
自引率
12.70%
发文量
1246
审稿时长
78 days
期刊介绍: The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials. The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信