Murat Alkaç , Devran Yazır , Yunus Emre Senol , Ünal Özdemir
{"title":"A novel risk analysis approach for the liquefication of nickel ore cargo using fault tree analysis integrated failure mode and effect analysis","authors":"Murat Alkaç , Devran Yazır , Yunus Emre Senol , Ünal Özdemir","doi":"10.1016/j.ocecoaman.2025.107617","DOIUrl":null,"url":null,"abstract":"<div><div>Liquefaction is the phenomenon in which a material with soil-like properties rapidly transitions from a solid, dry state to a nearly fluid state, posing significant risks to maritime safety. This study employs Fuzzy Fault Tree Analysis (FFTA) and Failure Mode and Effect Analysis (FMEA) to systematically evaluate the risks associated with nickel ore liquefaction. The data were derived from expert consultations, literature review, and theoretical modeling to ensure a robust assessment framework. The analysis revealed that the probability of nickel ore liquefaction is 0.1192, with human-related factors contributing to approximately 54% of all risks. Additionally, the integration of severity and detectability values identified ‘leaking from hatch cover rubbers' as the most critical failure mode, emphasizing the need for enhanced monitoring and crew training. This study uniquely integrates FFTA and FMEA to address human-factor-driven risks in maritime transportation. Unlike existing approaches, this dual-framework method prioritizes failure modes based on both probabilistic and consequence-based analyses, offering actionable insights for improving maritime safety. Compared to traditional methods, the proposed framework provides a comprehensive risk prioritization by integrating probabilistic analysis with consequence evaluation, allowing for more precise risk mitigation strategies.</div></div>","PeriodicalId":54698,"journal":{"name":"Ocean & Coastal Management","volume":"264 ","pages":"Article 107617"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean & Coastal Management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0964569125000791","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
Liquefaction is the phenomenon in which a material with soil-like properties rapidly transitions from a solid, dry state to a nearly fluid state, posing significant risks to maritime safety. This study employs Fuzzy Fault Tree Analysis (FFTA) and Failure Mode and Effect Analysis (FMEA) to systematically evaluate the risks associated with nickel ore liquefaction. The data were derived from expert consultations, literature review, and theoretical modeling to ensure a robust assessment framework. The analysis revealed that the probability of nickel ore liquefaction is 0.1192, with human-related factors contributing to approximately 54% of all risks. Additionally, the integration of severity and detectability values identified ‘leaking from hatch cover rubbers' as the most critical failure mode, emphasizing the need for enhanced monitoring and crew training. This study uniquely integrates FFTA and FMEA to address human-factor-driven risks in maritime transportation. Unlike existing approaches, this dual-framework method prioritizes failure modes based on both probabilistic and consequence-based analyses, offering actionable insights for improving maritime safety. Compared to traditional methods, the proposed framework provides a comprehensive risk prioritization by integrating probabilistic analysis with consequence evaluation, allowing for more precise risk mitigation strategies.
期刊介绍:
Ocean & Coastal Management is the leading international journal dedicated to the study of all aspects of ocean and coastal management from the global to local levels.
We publish rigorously peer-reviewed manuscripts from all disciplines, and inter-/trans-disciplinary and co-designed research, but all submissions must make clear the relevance to management and/or governance issues relevant to the sustainable development and conservation of oceans and coasts.
Comparative studies (from sub-national to trans-national cases, and other management / policy arenas) are encouraged, as are studies that critically assess current management practices and governance approaches. Submissions involving robust analysis, development of theory, and improvement of management practice are especially welcome.