Multi-stage multimodal fusion network with language models and uncertainty evaluation for early risk stratification in rheumatic and musculoskeletal diseases

IF 14.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Bing Wang , Weizi Li , Anthony Bradlow , Archie Watt , Antoni T.Y. Chan , Eghosa Bazuaye
{"title":"Multi-stage multimodal fusion network with language models and uncertainty evaluation for early risk stratification in rheumatic and musculoskeletal diseases","authors":"Bing Wang ,&nbsp;Weizi Li ,&nbsp;Anthony Bradlow ,&nbsp;Archie Watt ,&nbsp;Antoni T.Y. Chan ,&nbsp;Eghosa Bazuaye","doi":"10.1016/j.inffus.2025.103068","DOIUrl":null,"url":null,"abstract":"<div><div>Precise risk stratification of rheumatic musculoskeletal diseases (RMDs) is crucial for ensuring patients get right referrals and treatments quickly. However, it is challenging due to the non-specific symptoms and the lack of the diagnostically definitive single biomarker. The real-world referral data present several challenges such as the free format texts and incomplete data challenges, which introduces further modeling complexity, and makes uncertainty quantification crucial for ensuring reliable predictions and outcomes. To solve these challenges, we developed a multi-stage multimodal fusion network with conformal prediction method that can accurately risk stratify RMDs at the point of referrals, quantify the uncertainty and flag unreliable predictions for physician's interventions. The proposed models were trained and evaluated using referral data from 128 General Practices (GPs) in the UK, which include patients who visited and were referred by GPs with suspected inflammatory conditions in RMDs between February 2018 and January 2024. Our model achieved 0.73 accuracy, 0.79 AUC, and 0.75 G-Mean to differentiate inflammatory conditions (IC) and non-inflammatory conditions (NIC) using patients’ presenting condition description (PCD) and medical history (MH) data, and 0.90 accuracy, 0.92 AUC, and 0.89 G-Mean using patients’ PCD, MH and additional blood test data (BTD). Furthermore, conformal prediction-based method has been developed to evaluate prediction uncertainty and can further identify 75.71 % unreliable predictions for patients with PCD and MH data, and 66.67 % unreliable predictions for patients with additional BTD data, which could be given a second-round examination by GP/secondary care clinicians for patient safety. The findings of this study suggest that language models with multi-stage multimodal fusion and uncertainty evaluation can risk stratify RMDs accurately using data available at the point of referral in the real world. Therefore, it is possible to be used by GPs and clinicians to help patients get the right treatment faster, demonstrating practical potential to improve RMDs referrals in the real world.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"120 ","pages":"Article 103068"},"PeriodicalIF":14.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253525001411","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Precise risk stratification of rheumatic musculoskeletal diseases (RMDs) is crucial for ensuring patients get right referrals and treatments quickly. However, it is challenging due to the non-specific symptoms and the lack of the diagnostically definitive single biomarker. The real-world referral data present several challenges such as the free format texts and incomplete data challenges, which introduces further modeling complexity, and makes uncertainty quantification crucial for ensuring reliable predictions and outcomes. To solve these challenges, we developed a multi-stage multimodal fusion network with conformal prediction method that can accurately risk stratify RMDs at the point of referrals, quantify the uncertainty and flag unreliable predictions for physician's interventions. The proposed models were trained and evaluated using referral data from 128 General Practices (GPs) in the UK, which include patients who visited and were referred by GPs with suspected inflammatory conditions in RMDs between February 2018 and January 2024. Our model achieved 0.73 accuracy, 0.79 AUC, and 0.75 G-Mean to differentiate inflammatory conditions (IC) and non-inflammatory conditions (NIC) using patients’ presenting condition description (PCD) and medical history (MH) data, and 0.90 accuracy, 0.92 AUC, and 0.89 G-Mean using patients’ PCD, MH and additional blood test data (BTD). Furthermore, conformal prediction-based method has been developed to evaluate prediction uncertainty and can further identify 75.71 % unreliable predictions for patients with PCD and MH data, and 66.67 % unreliable predictions for patients with additional BTD data, which could be given a second-round examination by GP/secondary care clinicians for patient safety. The findings of this study suggest that language models with multi-stage multimodal fusion and uncertainty evaluation can risk stratify RMDs accurately using data available at the point of referral in the real world. Therefore, it is possible to be used by GPs and clinicians to help patients get the right treatment faster, demonstrating practical potential to improve RMDs referrals in the real world.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信