DEVICE: Depth and Visual Concepts Aware Transformer for OCR-based image captioning

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Dongsheng Xu , Qingbao Huang , Xingmao Zhang , Haonan Cheng , Feng Shuang , Yi Cai
{"title":"DEVICE: Depth and Visual Concepts Aware Transformer for OCR-based image captioning","authors":"Dongsheng Xu ,&nbsp;Qingbao Huang ,&nbsp;Xingmao Zhang ,&nbsp;Haonan Cheng ,&nbsp;Feng Shuang ,&nbsp;Yi Cai","doi":"10.1016/j.patcog.2025.111522","DOIUrl":null,"url":null,"abstract":"<div><div>OCR-based image captioning is an important but under-explored task, aiming to generate descriptions containing visual objects and scene text. Recent studies have made encouraging progress, but they are still suffering from a lack of overall understanding of scenes and generating inaccurate captions. One possible reason is that current studies mainly focus on constructing the plane-level geometric relationship of scene text without depth information. This leads to insufficient scene text relational reasoning so that models may describe scene text inaccurately. The other possible reason is that existing methods fail to generate fine-grained descriptions of some visual objects. In addition, they may ignore essential visual objects, leading to the scene text belonging to these ignored objects not being utilized. To address the above issues, we propose a Depth and Visual Concepts Aware Transformer (DEVICE) for OCR-based image captioning. Concretely, to construct three-dimensional geometric relations, we introduce depth information and propose a depth-enhanced feature updating module to ameliorate OCR token features. To generate more precise and comprehensive captions, we introduce semantic features of detected visual concepts as auxiliary information, and propose a semantic-guided alignment module to improve the model’s ability to utilize visual concepts. Our DEVICE is capable of comprehending scenes more comprehensively and boosting the accuracy of described visual entities. Sufficient experiments demonstrate the effectiveness of our proposed DEVICE, which outperforms state-of-the-art models on the TextCaps test set.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"164 ","pages":"Article 111522"},"PeriodicalIF":7.5000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320325001827","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

OCR-based image captioning is an important but under-explored task, aiming to generate descriptions containing visual objects and scene text. Recent studies have made encouraging progress, but they are still suffering from a lack of overall understanding of scenes and generating inaccurate captions. One possible reason is that current studies mainly focus on constructing the plane-level geometric relationship of scene text without depth information. This leads to insufficient scene text relational reasoning so that models may describe scene text inaccurately. The other possible reason is that existing methods fail to generate fine-grained descriptions of some visual objects. In addition, they may ignore essential visual objects, leading to the scene text belonging to these ignored objects not being utilized. To address the above issues, we propose a Depth and Visual Concepts Aware Transformer (DEVICE) for OCR-based image captioning. Concretely, to construct three-dimensional geometric relations, we introduce depth information and propose a depth-enhanced feature updating module to ameliorate OCR token features. To generate more precise and comprehensive captions, we introduce semantic features of detected visual concepts as auxiliary information, and propose a semantic-guided alignment module to improve the model’s ability to utilize visual concepts. Our DEVICE is capable of comprehending scenes more comprehensively and boosting the accuracy of described visual entities. Sufficient experiments demonstrate the effectiveness of our proposed DEVICE, which outperforms state-of-the-art models on the TextCaps test set.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pattern Recognition
Pattern Recognition 工程技术-工程:电子与电气
CiteScore
14.40
自引率
16.20%
发文量
683
审稿时长
5.6 months
期刊介绍: The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信