Sahand Khalilzadehtabrizi , Iman Mohagheghian , Martin G. Walker
{"title":"Analysis and design of Kirigami-based metallic energy-dissipating systems","authors":"Sahand Khalilzadehtabrizi , Iman Mohagheghian , Martin G. Walker","doi":"10.1016/j.tws.2025.113127","DOIUrl":null,"url":null,"abstract":"<div><div>Kirigami, the Japanese art of paper cutting, can be used to generate complex 3D shapes from 2D sheets. Kirigami structures can also be highly stretchable and accommodate extremely large strains from common materials, such as aluminium, which allow relatively small strains at failure. The high stretchability of Kirigami makes it an ideal method for energy dissipation applications. This study investigates the mechanics and energy-dissipating behaviour of Kirigami made from metallic materials. A comprehensive analysis is conducted using a combination of reduced-order analytical modelling, finite element analysis, and experimental validation. The analytical model is used to produce a design methodology for energy-dissipating devices based on metallic ribbon Kirigami and is then applied as a case study to the design of a novel fall arrest system. The results of this study will enable the design of efficient, and highly customisable energy-dissipating systems based on metallic Kirigami.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"212 ","pages":"Article 113127"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823125002216","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Kirigami, the Japanese art of paper cutting, can be used to generate complex 3D shapes from 2D sheets. Kirigami structures can also be highly stretchable and accommodate extremely large strains from common materials, such as aluminium, which allow relatively small strains at failure. The high stretchability of Kirigami makes it an ideal method for energy dissipation applications. This study investigates the mechanics and energy-dissipating behaviour of Kirigami made from metallic materials. A comprehensive analysis is conducted using a combination of reduced-order analytical modelling, finite element analysis, and experimental validation. The analytical model is used to produce a design methodology for energy-dissipating devices based on metallic ribbon Kirigami and is then applied as a case study to the design of a novel fall arrest system. The results of this study will enable the design of efficient, and highly customisable energy-dissipating systems based on metallic Kirigami.
期刊介绍:
Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses.
Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering.
The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.