{"title":"The selection and utilization of heading date loci in modern wheat breeding","authors":"Zhiwei Zhu, Xiangjun Lai, Yuanfei Zhang, Jialiang Zhang, Ji Shuang, Shengbao Xu","doi":"10.1016/j.ncrops.2025.100066","DOIUrl":null,"url":null,"abstract":"<div><div>Heading and flowering timing are critical factors in wheat breeding for variety adaptation and yield. In this study, we identified four key QTLs associated with these traits in 406 accessions across various environments. Modern wheat varieties tend to exhibit earlier heading and flowering times compared to traditional landraces. This trend demonstrates a shift towards faster development in modern wheat, particularly in the Yangtze River wheat zone. Notably, three out of the four haplotypes associated with accelerated development are common in different Chinese agroecological zones. These favored haplotypes may enhance modern wheat yields by increasing grain weight. Our research highlights the importance of selecting optimal heading and flowering times in contemporary wheat breeding. This understanding can help balance rapid development with yield maximization.</div></div>","PeriodicalId":100953,"journal":{"name":"New Crops","volume":"2 ","pages":"Article 100066"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Crops","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949952625000020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Heading and flowering timing are critical factors in wheat breeding for variety adaptation and yield. In this study, we identified four key QTLs associated with these traits in 406 accessions across various environments. Modern wheat varieties tend to exhibit earlier heading and flowering times compared to traditional landraces. This trend demonstrates a shift towards faster development in modern wheat, particularly in the Yangtze River wheat zone. Notably, three out of the four haplotypes associated with accelerated development are common in different Chinese agroecological zones. These favored haplotypes may enhance modern wheat yields by increasing grain weight. Our research highlights the importance of selecting optimal heading and flowering times in contemporary wheat breeding. This understanding can help balance rapid development with yield maximization.