Experimental study on the modulus of soil reaction for plastic pipes buried in lightweight cellular concrete backfill

IF 8.2 1区 工程技术 Q1 ENGINEERING, CIVIL
Yu-qiu Ye , Jie Han , Brad Dolton , Md Wasif Zaman , Robert L. Parsons
{"title":"Experimental study on the modulus of soil reaction for plastic pipes buried in lightweight cellular concrete backfill","authors":"Yu-qiu Ye ,&nbsp;Jie Han ,&nbsp;Brad Dolton ,&nbsp;Md Wasif Zaman ,&nbsp;Robert L. Parsons","doi":"10.1016/j.undsp.2024.11.003","DOIUrl":null,"url":null,"abstract":"<div><div>The modulus of soil reaction, representing the stiffness of a soil surrounding pipes, is a critical parameter in the design of buried flexible pipes. This study conducted plate loading tests on corrugated polyvinyl chloride, smooth polyvinyl chloride, and high-density polyethylene pipes buried in lightweight cellular concrete (LCC) backfills at densities of 400, 475, 550, and 650 kg/m<sup>3</sup> to investigate the pipe deformation behavior and moduli of soil reaction. In addition, this study examined the effects of the narrow trench condition on the pipe deformation and modulus of soil reaction. In these tests, the vertical and horizontal diameter changes of pipes under the vertical pressures applied through a hydraulic jack were measured. Test results reveal that the average moduli of soil reaction of plastic pipes within a wide trench backfilled by the LCCs at densities of 400, 475, 550, and 650 kg/m<sup>3</sup> were back-calculated as 66, 99, 133, and 205 MPa, respectively, using the modified Iowa formula. Furthermore, the back-calculated moduli of soil reaction for LCCs exhibited linear relationships with their densities and unconfined compressive strengths and were higher than the recommended values for the commonly used soil backfills. Based on the vertical deformation criterion of 5% pipe diameter, the ultimate bearing capacities of flexible pipes buried in wide LCCs at densities of 475, 550, and 650 kg/m<sup>3</sup> exceeded 500 kPa. The LCC with a narrow trench exhibited a lower modulus of soil reaction and ultimate bearing capacity but a larger pipe diameter change.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"22 ","pages":"Pages 153-167"},"PeriodicalIF":8.2000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Underground Space","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S246796742500011X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

The modulus of soil reaction, representing the stiffness of a soil surrounding pipes, is a critical parameter in the design of buried flexible pipes. This study conducted plate loading tests on corrugated polyvinyl chloride, smooth polyvinyl chloride, and high-density polyethylene pipes buried in lightweight cellular concrete (LCC) backfills at densities of 400, 475, 550, and 650 kg/m3 to investigate the pipe deformation behavior and moduli of soil reaction. In addition, this study examined the effects of the narrow trench condition on the pipe deformation and modulus of soil reaction. In these tests, the vertical and horizontal diameter changes of pipes under the vertical pressures applied through a hydraulic jack were measured. Test results reveal that the average moduli of soil reaction of plastic pipes within a wide trench backfilled by the LCCs at densities of 400, 475, 550, and 650 kg/m3 were back-calculated as 66, 99, 133, and 205 MPa, respectively, using the modified Iowa formula. Furthermore, the back-calculated moduli of soil reaction for LCCs exhibited linear relationships with their densities and unconfined compressive strengths and were higher than the recommended values for the commonly used soil backfills. Based on the vertical deformation criterion of 5% pipe diameter, the ultimate bearing capacities of flexible pipes buried in wide LCCs at densities of 475, 550, and 650 kg/m3 exceeded 500 kPa. The LCC with a narrow trench exhibited a lower modulus of soil reaction and ultimate bearing capacity but a larger pipe diameter change.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Underground Space
Underground Space ENGINEERING, CIVIL-
CiteScore
10.20
自引率
14.10%
发文量
71
审稿时长
63 days
期刊介绍: Underground Space is an open access international journal without article processing charges (APC) committed to serving as a scientific forum for researchers and practitioners in the field of underground engineering. The journal welcomes manuscripts that deal with original theories, methods, technologies, and important applications throughout the life-cycle of underground projects, including planning, design, operation and maintenance, disaster prevention, and demolition. The journal is particularly interested in manuscripts related to the latest development of smart underground engineering from the perspectives of resilience, resources saving, environmental friendliness, humanity, and artificial intelligence. The manuscripts are expected to have significant innovation and potential impact in the field of underground engineering, and should have clear association with or application in underground projects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信