{"title":"P, N co-doped hollow carbon nanospheres prepared by micellar copolymerization for increased hydrogen evolution in alkaline water","authors":"Yi-meng HAN, Hao XIONG, Jia-ying YANG, Jian-gan WANG, Fei XU","doi":"10.1016/S1872-5805(25)60949-8","DOIUrl":null,"url":null,"abstract":"<div><div>The design of cost-effective and efficient metal-free carbon-based catalysts for the hydrogen evolution reaction (HER) is of great significance for increasing the production of clean hydrogen by the electrolysis of alkaline water. Precise control of the electronic structure by heteroatom doping has proven to be efficient for increasing catalytic activity. Nevertheless, both the structural characteristics and the underlying mechanism are not well understood, especially for doping with two different atoms, thus limiting the use of these catalysts. We report the production of phosphorus and nitrogen co-doped hollow carbon nanospheres (HCNs) by the copolymerization of pyrrole and aniline at a Triton X-100 micelle-interface, followed by doping with phytic acid and carbonization. The unique pore structure and defect-rich framework of the HCNs expose numerous active sites. Crucially, the combined effect of graphitic nitrogen and phosphorus-carbon bonds modulate the local electronic structure of adjacent C atoms and facilitates electron transfer. As a result, the HCN carbonized at 1100 °C exhibited superior HER activity and an outstanding stability (70 h at a current density of 10 mA cm<sup>−2</sup>) in alkaline water, because of the large number of graphitic nitrogen and phosphorus-carbon bonds.</div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (98KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 1","pages":"Pages 211-221"},"PeriodicalIF":5.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580525609498","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
The design of cost-effective and efficient metal-free carbon-based catalysts for the hydrogen evolution reaction (HER) is of great significance for increasing the production of clean hydrogen by the electrolysis of alkaline water. Precise control of the electronic structure by heteroatom doping has proven to be efficient for increasing catalytic activity. Nevertheless, both the structural characteristics and the underlying mechanism are not well understood, especially for doping with two different atoms, thus limiting the use of these catalysts. We report the production of phosphorus and nitrogen co-doped hollow carbon nanospheres (HCNs) by the copolymerization of pyrrole and aniline at a Triton X-100 micelle-interface, followed by doping with phytic acid and carbonization. The unique pore structure and defect-rich framework of the HCNs expose numerous active sites. Crucially, the combined effect of graphitic nitrogen and phosphorus-carbon bonds modulate the local electronic structure of adjacent C atoms and facilitates electron transfer. As a result, the HCN carbonized at 1100 °C exhibited superior HER activity and an outstanding stability (70 h at a current density of 10 mA cm−2) in alkaline water, because of the large number of graphitic nitrogen and phosphorus-carbon bonds.
期刊介绍:
New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.