Yan-bing YUAN , Zong-bin ZHAO , Hong-hui BI , Run-meng ZHANG , Xu-zhen WANG , Jie-shan QIU
{"title":"A B,N co-doped carbon nanotube array with anchored MnO2 nanosheets as a flexible cathode for aqueous zinc-ion batteries","authors":"Yan-bing YUAN , Zong-bin ZHAO , Hong-hui BI , Run-meng ZHANG , Xu-zhen WANG , Jie-shan QIU","doi":"10.1016/S1872-5805(25)60945-0","DOIUrl":null,"url":null,"abstract":"<div><div>For rechargeable aqueous zinc-ion batteries (ZIBs), the design of nanocomposites comprised of electrochemically active materials and carbon materials with novel structures has great promise in addressing the issue of electrical conductivity and structural stability in the electrode materials during electrochemical cycling. We report the production of a novel flexible electrode material, by anchoring MnO<sub>2</sub> nanosheets on a B,N co-doped carbon nanotube array (BNCNTs) grown on carbon cloth (BNCNTs@MnO<sub>2</sub>), which was fabricated by in-situ pyrolysis and hydrothermal growth. The generated BNCNTs were strongly bonded to the surface of the carbon fibers in the carbon cloth which provides both excellent electron transport and ion diffusion, and improves the stability and durability of the cathode. Importantly, the BNCNTs offer more active sites for the hydrothermal growth of MnO<sub>2</sub>, ensuring a uniform distribution. Electrochemical tests show that BNCNTs@MnO<sub>2</sub> delivers a high specific capacity of 310.7 mAh g<sup>−1</sup> at 0.1 A g<sup>−1</sup>, along with excellent rate capability and outstanding cycling stability, with a 79.7% capacity retention after 8000 cycles at 3 A g<sup>−1</sup>.</div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (181KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 1","pages":"Pages 200-210"},"PeriodicalIF":5.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580525609450","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
For rechargeable aqueous zinc-ion batteries (ZIBs), the design of nanocomposites comprised of electrochemically active materials and carbon materials with novel structures has great promise in addressing the issue of electrical conductivity and structural stability in the electrode materials during electrochemical cycling. We report the production of a novel flexible electrode material, by anchoring MnO2 nanosheets on a B,N co-doped carbon nanotube array (BNCNTs) grown on carbon cloth (BNCNTs@MnO2), which was fabricated by in-situ pyrolysis and hydrothermal growth. The generated BNCNTs were strongly bonded to the surface of the carbon fibers in the carbon cloth which provides both excellent electron transport and ion diffusion, and improves the stability and durability of the cathode. Importantly, the BNCNTs offer more active sites for the hydrothermal growth of MnO2, ensuring a uniform distribution. Electrochemical tests show that BNCNTs@MnO2 delivers a high specific capacity of 310.7 mAh g−1 at 0.1 A g−1, along with excellent rate capability and outstanding cycling stability, with a 79.7% capacity retention after 8000 cycles at 3 A g−1.
期刊介绍:
New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.