The use of an oxidized carbon nanotube film to control Zn deposition and eliminate dendrite formation in a Zn ion battery

IF 5.7 3区 材料科学 Q2 Materials Science
Pin-xiang LI , Zhe-han YI , Ye-xing WANG , Chang HE , Ji LIANG , Feng HOU
{"title":"The use of an oxidized carbon nanotube film to control Zn deposition and eliminate dendrite formation in a Zn ion battery","authors":"Pin-xiang LI ,&nbsp;Zhe-han YI ,&nbsp;Ye-xing WANG ,&nbsp;Chang HE ,&nbsp;Ji LIANG ,&nbsp;Feng HOU","doi":"10.1016/S1872-5805(25)60950-4","DOIUrl":null,"url":null,"abstract":"<div><div>Aqueous zinc ion batteries are regarded as one of the most promising candidates for large-scale energy storage due to their high safety, cost-effectiveness, and environmental friendliness. However, uncontrolled zinc dendrite growth and side reactions of the zinc anode decrease the stability of Zn batteries. We report the synthesis of an air-oxidized carbon nanotube (O-CNT) film by chemical vapor deposition followed by heat treatment in air which is used as a protective layer on the Zn foil to suppress zinc dendrite growth. The increase in the hydrophilicity of the O-CNT film caused by air oxidation facilitates zinc deposition between the film and the anode instead of deposition on the film surface. The porous structure of the O-CNT film homogenizes the Zn<sup>2+</sup> ion flux and the electric field on the surface of the Zn foil, leading to the uniform deposition of Zn. As a result, a O-CNT@Zn symmetric cell has a much better cycling stability with a life of more than 3000 h at 1 mA cm<sup>−2</sup> with a capacity of 1 mAh cm<sup>−2</sup>, and values of more than 2000 h and 1 mAh cm<sup>−2</sup> at 5 mA cm<sup>−2</sup>. In addition, a O-CNT@Zn || Mn<sup>2+</sup> inserted hydrated vanadium pentoxide (MnVOH) full cell has a better rate performance than a Zn || MnVOH cell, achieving a high discharge capacity of 194 mAh g<sup>−1</sup> at a high current density of 8 A g<sup>−1</sup>. In a long-term cycling test, the O-CNT@Zn || MnVOH full cell has a capacity retention of 58.8% after 2000 cycles at a current density of 5 A·g<sup>−1</sup>.</div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (102KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 1","pages":"Pages 154-166"},"PeriodicalIF":5.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580525609504","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous zinc ion batteries are regarded as one of the most promising candidates for large-scale energy storage due to their high safety, cost-effectiveness, and environmental friendliness. However, uncontrolled zinc dendrite growth and side reactions of the zinc anode decrease the stability of Zn batteries. We report the synthesis of an air-oxidized carbon nanotube (O-CNT) film by chemical vapor deposition followed by heat treatment in air which is used as a protective layer on the Zn foil to suppress zinc dendrite growth. The increase in the hydrophilicity of the O-CNT film caused by air oxidation facilitates zinc deposition between the film and the anode instead of deposition on the film surface. The porous structure of the O-CNT film homogenizes the Zn2+ ion flux and the electric field on the surface of the Zn foil, leading to the uniform deposition of Zn. As a result, a O-CNT@Zn symmetric cell has a much better cycling stability with a life of more than 3000 h at 1 mA cm−2 with a capacity of 1 mAh cm−2, and values of more than 2000 h and 1 mAh cm−2 at 5 mA cm−2. In addition, a O-CNT@Zn || Mn2+ inserted hydrated vanadium pentoxide (MnVOH) full cell has a better rate performance than a Zn || MnVOH cell, achieving a high discharge capacity of 194 mAh g−1 at a high current density of 8 A g−1. In a long-term cycling test, the O-CNT@Zn || MnVOH full cell has a capacity retention of 58.8% after 2000 cycles at a current density of 5 A·g−1.
  1. Download: Download high-res image (102KB)
  2. Download: Download full-size image
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Carbon Materials
New Carbon Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.10
自引率
8.80%
发文量
3245
审稿时长
5.5 months
期刊介绍: New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信